- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试从源代码构建 pytorch v1.4.0,因为我需要它用于另一个模块。
我已经成功地从源代码构建了 pytorch,但是当我尝试运行预期的 python 脚本时,我收到了这个错误:
RuntimeError: PyTorch was compiled without NumPy support
所以我查了一下我做错了什么,结果发现我需要在从源代码构建 pytorch 之前安装 numpy,这就是我所做的。
pip3 install numpy==1.19.4
安装 pytorch 时,控制台会为我提供很多信息,包括build设置。build设置如下所示:
-- Compile definitions : ONNX_ML=1;ONNX_NAMESPACE=onnx_torch;HAVE_MMAP=1;_FILE_OFFSET_BITS=64;HAVE_SHM_OPEN=1;HAVE_SHM_UNLINK=1;HAVE_MALLOC_USABLE_SIZE=1
-- CMAKE_PREFIX_PATH : /home/elvygcp/venv/lib/python3.6/site-packages;/usr/local/cuda
-- CMAKE_INSTALL_PREFIX : /home/elvygcp/venv/pytorch-1.4.0/torch
--
-- TORCH_VERSION : 1.4.0
-- CAFFE2_VERSION : 1.4.0
-- BUILD_CAFFE2_MOBILE : ON
-- USE_STATIC_DISPATCH : OFF
-- BUILD_BINARY : OFF
-- BUILD_CUSTOM_PROTOBUF : ON
-- Link local protobuf : ON
-- BUILD_DOCS : OFF
-- BUILD_PYTHON : True
-- Python version : 3.6.9
-- Python executable : /home/elvygcp/venv/bin/python3
-- Pythonlibs version : 3.6.9
-- Python library : /usr/lib/libpython3.6m.so.1.0
-- Python includes : /usr/include/python3.6m
-- Python site-packages: lib/python3.6/site-packages
-- BUILD_CAFFE2_OPS : ON
-- BUILD_SHARED_LIBS : ON
-- BUILD_TEST : True
-- BUILD_JNI : OFF
-- INTERN_BUILD_MOBILE :
-- USE_ASAN : OFF
-- USE_CUDA : ON
-- CUDA static link : OFF
-- USE_CUDNN : OFF
-- CUDA version : 10.2
-- CUDA root directory : /usr/local/cuda
-- CUDA library : /usr/local/cuda/lib64/stubs/libcuda.so
-- cudart library : /usr/local/cuda/lib64/libcudart.so
-- cublas library : /usr/lib/x86_64-linux-gnu/libcublas.so
-- cufft library : /usr/local/cuda/lib64/libcufft.so
-- curand library : /usr/local/cuda/lib64/libcurand.so
-- nvrtc : /usr/local/cuda/lib64/libnvrtc.so
-- CUDA include path : /usr/local/cuda/include
-- NVCC executable : /usr/local/cuda/bin/nvcc
-- CUDA host compiler : /usr/bin/cc
-- USE_TENSORRT : OFF
-- USE_ROCM : OFF
-- USE_EIGEN_FOR_BLAS : ON
-- USE_FBGEMM : ON
-- USE_FFMPEG : OFF
-- USE_GFLAGS : OFF
-- USE_GLOG : OFF
-- USE_LEVELDB : OFF
-- USE_LITE_PROTO : OFF
-- USE_LMDB : OFF
-- USE_METAL : OFF
-- USE_MKL : OFF
-- USE_MKLDNN : ON
-- USE_MKLDNN_CBLAS : OFF
-- USE_NCCL : ON
-- USE_SYSTEM_NCCL : OFF
-- USE_NNPACK : ON
-- USE_NUMPY : OFF
-- USE_OBSERVERS : ON
-- USE_OPENCL : OFF
-- USE_OPENCV : OFF
-- USE_OPENMP : ON
-- USE_TBB : OFF
-- USE_PROF : OFF
-- USE_QNNPACK : ON
-- USE_REDIS : OFF
-- USE_ROCKSDB : OFF
-- USE_ZMQ : OFF
-- USE_DISTRIBUTED : ON
-- USE_MPI : OFF
-- USE_GLOO : ON
-- BUILD_NAMEDTENSOR : OFF
有两件事我不明白:
USE_CUDNN : OFF
,我认为这很奇怪,因为我遵循了他们 github 页面上的 pytorch 构建说明,其中提到我需要 CuDNN 从源代码构建 pytorch,并且 CuDNN 安装在我的系统上。USE_NUMPY : OFF
,我不知道为什么,但是 pytorch 无法识别 numpy。OS: Ubuntu 18.04 LTS
Cuda version: 10.2
CuDNN version: 8
python venv in Google Cloud Compute Engine VM
我如何从源代码构建 pytorch 1.4.0:
git clone --branch v1.4.0 https://github.com/pytorch/pytorch.git pytorch-1.4.0
cd pytorch-1.4.0/
git submodule update --init --recursive
sudo apt install cmake -y
sudo apt-get update
cd ../
sudo apt install python3-venv -y
python3 -m venv venv/
cd venv
source bin/activate
cd pytorch-1.4.0/
pip install pyyaml
python3 setup.py install
cd ../
git clone --branch v0.5.0 https://github.com/pytorch/vision.git torchvision-0.5.0
cd torchvision-0.5.0/
python3 setup.py install
cd ../
如果有人能告诉我如何让 pytorch 识别并使用 numpy 构建,我将不胜感激。
最佳答案
好的,所以我不完全知道解决方案是什么,因为我做了两件事:
sudo USE_ROCM=1 USE_LMDB=1 USE_OPENCV=1 MAX_JOBS=15 python3 setup.py clean
USE_NUMPY : ON
.
关于python - 如何使用 numpy 从源代码构建 pytorch,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64662102/
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 已关闭 3 年前。 此帖子于去年编辑
据我所知,在使用 GPU 训练和验证模型时,GPU 内存主要用于加载数据,向前和向后。据我所知,我认为 GPU 内存使用应该相同 1) 训练前,2) 训练后,3) 验证前,4) 验证后。但在我的例子中
我正在尝试在 PyTorch 中将两个复数矩阵相乘,看起来 the torch.matmul functions is not added yet to PyTorch library for com
我正在尝试定义二分类问题的损失函数。但是,目标标签不是硬标签0,1,而是0~1之间的一个 float 。 Pytorch 中的 torch.nn.CrossEntropy 不支持软标签,所以我想自己写
我正在尝试让 PyTorch 与 DataLoader 一起工作,据说这是处理小批量的最简单方法,在某些情况下这是获得最佳性能所必需的。 DataLoader 需要一个数据集作为输入。 大多数关于 D
Pytorch Dataloader 的迭代顺序是否保证相同(在温和条件下)? 例如: dataloader = DataLoader(my_dataset, batch_size=4,
PyTorch 的负对数似然损失,nn.NLLLoss定义为: 因此,如果以单批处理的标准重量计算损失,则损失的公式始终为: -1 * (prediction of model for correct
在PyTorch中,new_ones()与ones()有什么区别。例如, x2.new_ones(3,2, dtype=torch.double) 与 torch.ones(3,2, dtype=to
假设我有一个矩阵 src带形状(5, 3)和一个 bool 矩阵 adj带形状(5, 5)如下, src = tensor([[ 0, 1, 2], [ 3, 4,
我想知道如果不在第 4 行中使用“for”循环,下面的代码是否有更有效的替代方案? import torch n, d = 37700, 7842 k = 4 sample = torch.cat([
我有三个简单的问题。 如果我的自定义损失函数不可微会发生什么? pytorch 会通过错误还是做其他事情? 如果我在我的自定义函数中声明了一个损失变量来表示模型的最终损失,我应该放 requires_
我想知道 PyTorch Parameter 和 Tensor 的区别? 现有answer适用于使用变量的旧 PyTorch? 最佳答案 这就是 Parameter 的全部想法。类(附加)在单个图像中
给定以下张量(这是网络的结果 [注意 grad_fn]): tensor([121., 241., 125., 1., 108., 238., 125., 121., 13., 117., 12
什么是__constants__在 pytorch class Linear(Module):定义于 https://pytorch.org/docs/stable/_modules/torch/nn
我在哪里可以找到pytorch函数conv2d的源代码? 它应该在 torch.nn.functional 中,但我只找到了 _add_docstr 行, 如果我搜索conv2d。我在这里看了: ht
如 documentation 中所述在 PyTorch 中,Conv2d 层使用默认膨胀为 1。这是否意味着如果我想创建一个简单的 conv2d 层,我必须编写 nn.conv2d(in_chann
我阅读了 Pytorch 的源代码,发现它没有实现 convolution_backward 很奇怪。函数,唯一的 convolution_backward_overrideable 函数是直接引发错
我对编码真的很陌生,现在我正在尝试将我的标签变成一种热门编码。我已经完成将 np.array 传输到张量,如下所示 tensor([4., 4., 4., 4., 4., 4., 4., 4., 4.
我正在尝试实现 text classification model使用CNN。据我所知,对于文本数据,我们应该使用一维卷积。我在 pytorch 中看到了一个使用 Conv2d 的示例,但我想知道如何
我有一个多标签分类问题,我正试图用 Pytorch 中的 CNN 解决这个问题。我有 80,000 个训练示例和 7900 个类;每个示例可以同时属于多个类,每个示例的平均类数为 130。 问题是我的
我是一名优秀的程序员,十分优秀!