- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 CUDA 中构建了一个基本内核来对两个复向量进行元素向量向量乘法。内核代码插入下面 ( multiplyElementwise
)。它工作正常,但由于我注意到其他看似简单的操作(如缩放向量)在 CUBLAS 或 CULA 等库中进行了优化,我想知道是否可以通过库调用替换我的代码?令我惊讶的是,CUBLAS 和 CULA 都没有这个选项,我试图通过使向量之一成为对角矩阵向量乘积的对角线来伪造它,但结果真的很慢。
作为最后的手段,我尝试通过在共享内存中加载两个向量然后从那里工作来自己优化此代码(参见下面的 multiplyElementwiseFast
),但这比我的原始代码慢。
所以我的问题:
multiplyElementwise
)吗? __global__ void multiplyElementwise(cufftComplex* f0, cufftComplex* f1, int size)
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < size)
{
float a, b, c, d;
a = f0[i].x;
b = f0[i].y;
c = f1[i].x;
d = f1[i].y;
float k;
k = a * (c + d);
d = d * (a + b);
c = c * (b - a);
f0[i].x = k - d;
f0[i].y = k + c;
}
}
__global__ void multiplyElementwiseFast(cufftComplex* f0, cufftComplex* f1, int size)
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < 4*size)
{
const int N = 256;
const int thId = threadIdx.x / 4;
const int rem4 = threadIdx.x % 4;
const int i4 = i / 4;
__shared__ float a[N];
__shared__ float b[N];
__shared__ float c[N];
__shared__ float d[N];
__shared__ float Re[N];
__shared__ float Im[N];
if (rem4 == 0)
{
a[thId] = f0[i4].x;
Re[thId] = 0.f;
}
if (rem4 == 1)
{
b[thId] = f0[i4].y;
Im[thId] = 0.f;
}
if (rem4 == 2)
c[thId] = f1[i4].x;
if (rem4 == 0)
d[thId] = f1[i4].y;
__syncthreads();
if (rem4 == 0)
atomicAdd(&(Re[thId]), a[thId]*c[thId]);
if (rem4 == 1)
atomicAdd(&(Re[thId]), -b[thId]*d[thId]);
if (rem4 == 2)
atomicAdd(&(Im[thId]), b[thId]*c[thId]);
if (rem4 == 3)
atomicAdd(&(Im[thId]), a[thId]*d[thId]);
__syncthreads();
if (rem4 == 0)
f0[i4].x = Re[thId];
if (rem4 == 1)
f0[i4].y = Im[thId];
}
}
最佳答案
如果您要实现的是具有复数的简单元素乘积,那么您似乎确实在 multiplyElementwise
中执行了一些额外的步骤。增加寄存器使用的内核。您尝试计算的是:
f0[i].x = a*c - b*d;
f0[i].y = a*d + b*c;
(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c)
.通过使用改进的复数乘法,您可以用 1 次乘法换取 3 次加法和一些额外的寄存器。这是否合理可能取决于您使用的硬件。例如,如果您的硬件支持
FMA (融合乘加),这种优化可能效率不高。您应该考虑阅读此文档:“
Precision & Performance:Floating Point and IEEE 754 Compliance for NVIDIA GPUs ”,它也解决了浮点精度问题。
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <time.h>
struct ElementWiseProductBasic : public thrust::binary_function<float2,float2,float2>
{
__host__ __device__
float2 operator()(const float2& v1, const float2& v2) const
{
float2 res;
res.x = v1.x * v2.x - v1.y * v2.y;
res.y = v1.x * v2.y + v1.y * v2.x;
return res;
}
};
/**
* See: http://www.embedded.com/design/embedded/4007256/Digital-Signal-Processing-Tricks--Fast-multiplication-of-complex-numbers%5D
*/
struct ElementWiseProductModified : public thrust::binary_function<float2,float2,float2>
{
__host__ __device__
float2 operator()(const float2& v1, const float2& v2) const
{
float2 res;
float a, b, c, d, k;
a = v1.x;
b = v1.y;
c = v2.x;
d = v2.y;
k = a * (c + d);
d = d * (a + b);
c = c * (b - a);
res.x = k -d;
res.y = k + c;
return res;
}
};
int get_random_int(int min, int max)
{
return min + (rand() % (int)(max - min + 1));
}
thrust::host_vector<float2> init_vector(const size_t N)
{
thrust::host_vector<float2> temp(N);
for(size_t i = 0; i < N; i++)
{
temp[i].x = get_random_int(0, 10);
temp[i].y = get_random_int(0, 10);
}
return temp;
}
int main(void)
{
const size_t N = 100000;
const bool compute_basic_product = true;
const bool compute_modified_product = true;
srand(time(NULL));
thrust::host_vector<float2> h_A = init_vector(N);
thrust::host_vector<float2> h_B = init_vector(N);
thrust::device_vector<float2> d_A = h_A;
thrust::device_vector<float2> d_B = h_B;
thrust::host_vector<float2> h_result(N);
thrust::host_vector<float2> h_result_modified(N);
if (compute_basic_product)
{
thrust::device_vector<float2> d_result(N);
thrust::transform(d_A.begin(), d_A.end(),
d_B.begin(), d_result.begin(),
ElementWiseProductBasic());
h_result = d_result;
}
if (compute_modified_product)
{
thrust::device_vector<float2> d_result_modified(N);
thrust::transform(d_A.begin(), d_A.end(),
d_B.begin(), d_result_modified.begin(),
ElementWiseProductModified());
h_result_modified = d_result_modified;
}
std::cout << std::fixed;
for (size_t i = 0; i < 4; i++)
{
float2 a = h_A[i];
float2 b = h_B[i];
std::cout << "(" << a.x << "," << a.y << ")";
std::cout << " * ";
std::cout << "(" << b.x << "," << b.y << ")";
if (compute_basic_product)
{
float2 prod = h_result[i];
std::cout << " = ";
std::cout << "(" << prod.x << "," << prod.y << ")";
}
if (compute_modified_product)
{
float2 prod_modified = h_result_modified[i];
std::cout << " = ";
std::cout << "(" << prod_modified.x << "," << prod_modified.y << ")";
}
std::cout << std::endl;
}
return 0;
}
(6.000000,5.000000) * (0.000000,1.000000) = (-5.000000,6.000000)
(3.000000,2.000000) * (0.000000,4.000000) = (-8.000000,12.000000)
(2.000000,10.000000) * (10.000000,4.000000) = (-20.000000,108.000000)
(4.000000,8.000000) * (10.000000,9.000000) = (-32.000000,116.000000)
关于cuda - 使用 CUDA 进行逐元素向量乘法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16899237/
如果矩阵A在X中,矩阵B在Y中。 进行乘法运算只是 Z = X*Y。正确假设两个数组的大小相同。 如何使用 for 循环计算它? 最佳答案 ja72 的anwser 是错误的,请查看我在其下的评论以了
我有一个 C 程序,它有 n 次乘法(单次乘法和 n 次迭代),我发现另一个逻辑有 n/2 次迭代(1 次乘法 + 2 次加法)。我知道两者都是 O(n) 的复杂性。但就 CPU 周期而言。哪个更快?
我有一个矩阵x: x <- matrix(1:8, nrow = 2, ncol = 4, byrow = 2) # [,1] [,2] [,3] [,4] #[1,] 1 2 3
我有一个矩阵x: x <- matrix(1:8, nrow = 2, ncol = 4, byrow = 2) # [,1] [,2] [,3] [,4] #[1,] 1 2 3
我正在创建一个基于电影 InTime 的 Minecraft 插件,并尝试创建代码,在玩家死亡时玩家将失去 25% 的时间。 当前代码是: String minus = itapi.getTimeSt
我正在尝试将 2 个矩阵与重载的 * 运算符相乘并打印结果。虽然看起来我不能为重载函数提供超过 1 个参数。如何将这两个矩阵传递给重载函数?请在下面查看我的实现。 #include #include
为什么在 Java 中使用 .*?例如 double probability = 1.*count/numdata; 给出相同的输出: double probability = count/numda
如果我尝试将两个值与单位相乘,则会出现意外错误。 $test: 10px; .testing{ width: $test * $test; } result: 100px*px isn't a v
我正在尝试计算库存中所有产品的总值(value)。表中的每种产品都有价格和数量。因此,我需要将每种产品的价格乘以数量,然后将所有这些加在一起以获得所有产品的总计。根据上一个问题,我现在可以使用 MyS
我正在尝试计算库存中所有产品的总值(value)。表中的每种产品都有价格和数量。因此,我需要将每种产品的价格乘以数量,然后将所有这些加在一起以获得所有产品的总计。根据上一个问题,我现在可以使用 MyS
大家好,我有以下代码行 solution first = mylist.remove((int)(Math.random() * mylist)); 这给了我一个错误说明 The operator *
我必须做很多乘法运算。如果我考虑效率,那么我应该使用位运算而不是常规的 * 运算吗?如果有差异如何进行位运算?提前致谢.. 最佳答案 不,您应该使用乘法运算符,让优化编译器决定如何最快地完成它。 您会
两个 n 位数字 A 和 B 的乘法可以理解为移位的总和: (A << i1) + (A << i2) + ... 其中 i1, i2, ... 是 B 中设置为 1 的位数。 现在让我们用 OR
我想使用 cuda 6 进行 bool 乘法,但我无法以正确的方式做到这一点。B 是一个 bool 对称矩阵,我必须进行 B^n bool 乘法。 我的 C++ 代码是: for (m=0; m
我正在编写一个定点类,但遇到了一些问题...乘法、除法部分,我不确定如何模拟。我对部门运算符(operator)进行了非常粗暴的尝试,但我确信这是错误的。到目前为止,它是这样的: class Fixe
我有TABLE_A我需要创建 TABLE_A_FINAL 规则: 在TABLE_A_FINAL中我们有包含 ID_C 的所有可能组合的行如果在 TABLE_A与 ID_C 的组合相同我们乘以 WEIG
这个问题在这里已经有了答案: Simple way to repeat a string (32 个答案) 关闭 6 年前。 我有一个任务是重复字符乘以它例如用户应该写重复输入 3 R 输出的字母和
我最近学习了C++的基础知识。我发现了一些我不明白的东西。这是让我有点困惑的程序。 #include using namespace std; int main()
我有两个列表: list_a = list_b = list(范围(2, 6)) final_list = [] 我想知道如何将两个列表中的所有值相乘。我希望我的 final_list 包含 [2*2
如何修改此代码以适用于任何基数? (二进制、十六进制、基数 10 等) int mult(int a, int b, int base){ if((a<=base)||(b<=base)){
我是一名优秀的程序员,十分优秀!