- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我目前正在 Coursera 上开设可重复数据类(class),其中一个问题是询问每天步数的平均值和中位数,我有这个,但是当我使用汇总功能确认时,平均值和中位数的汇总版本是不同的。我正在通过 knitr 运行这个
为什么会这样?
** 下面是一个编辑,显示到目前为止我的所有脚本,包括原始数据的链接:
##Download the data You have to change https to http to get this to work in knitr
target_url <- "http://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip"
target_localfile = "ActivityMonitoringData.zip"
if (!file.exists(target_localfile)) {
download.file(target_url, destfile = target_localfile)
}
Unzip the file to the temporary directory
unzip(target_localfile, exdir="extract", overwrite=TRUE)
List the extracted files
list.files("./extract")
## [1] "activity.csv"
Load the extracted data into R
activity.csv <- read.csv("./extract/activity.csv", header = TRUE)
activity1 <- activity.csv[complete.cases(activity.csv),]
str(activity1)
## 'data.frame': 15264 obs. of 3 variables:
## $ steps : int 0 0 0 0 0 0 0 0 0 0 ...
## $ date : Factor w/ 61 levels "2012-10-01","2012-10-02",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ interval: int 0 5 10 15 20 25 30 35 40 45 ...
Use a histogram to view the number of steps taken each day
histData <- aggregate(steps ~ date, data = activity1, sum)
h <- hist(histData$steps, # Save histogram as object
breaks = 11, # "Suggests" 11 bins
freq = T,
col = "thistle1",
main = "Histogram of Activity",
xlab = "Number of daily steps")
Obtain the Mean and Median of the daily steps
steps <- histData$steps
mean(steps)
## [1] 10766
median(steps)
## [1] 10765
summary(histData$steps)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 41 8840 10800 10800 13300 21200
summary(steps)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 41 8840 10800 10800 13300 21200
sessionInfo()
## R version 3.1.1 (2014-07-10)
## Platform: i386-w64-mingw32/i386 (32-bit)
##
## locale:
## [1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
## [3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Australia.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] knitr_1.6
##
## loaded via a namespace (and not attached):
## [1] evaluate_0.5.5 formatR_1.0 stringr_0.6.2 tools_3.1.1
最佳答案
其实,答案是 正确,你只是打印错了。您正在设置 digits
某处的选项。
把它放在脚本之前:
options(digits=12)
mean(steps)
# [1] 10766.1886792
median(steps)
# [1] 10765
summary(steps)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 41.0000 8841.0000 10765.0000 10766.1887 13294.0000 21194.0000
summary
使用
max(3, getOption("digits")-3)
打印了多少个数字。所以它四舍五入(10766.1887而不是10766.1886792)。
关于r - 均值和中值与汇总,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26360076/
我想获取每一行某些列的平均值。 我有此数据: w=c(5,6,7,8) x=c(1,2,3,4) y=c(1,2,3) length(y)=4 z=data.frame(w,x,y) 哪个返回:
类似于Numpy mean with condition我的问题将其扩展到对矩阵进行操作:计算矩阵 rdat 的行均值,跳过某些单元格 - 在本例中我使用 0 作为要跳过的单元格 - 就好像这些值从一
我有一个数据集,其中的列标题为产品名称、品牌、评级(1:5)、评论文本、评论有用性。我需要的是提出一个使用评论的推荐算法。我这里必须使用 python 进行编码。数据集采用.csv 格式。 为了识别数
我在 R^3 中有 n 个点,我想用 k 个椭球体或圆柱体覆盖它们(我不在乎;以更容易的为准)。我想大约最小化卷的并集。假设 n 是数万,k 是少数。开发时间(即简单性)比运行时更重要。 显然我可以运
我创建了一个计算均值、中位数和方差的程序。该程序最多接受 500 个输入。当有 500 个输入(我的数组的最大大小)时,我的所有方法都能完美运行。当输入较少时,只有“平均值”计算器起作用。这是整个程序
我已经完成了距离的计算并存储在推力 vector 中,例如,我有 2 个质心和 5 个数据点,我计算距离的方法是,对于每个质心,我首先计算 5 个数据点的距离并存储在阵列,然后与距离一维阵列中的另一个
下面的代码适用于每一列的总数,但我想计算出每个物种的平均值。 # Read data file into array data = numpy.genfromtxt('data/iris.csv',
我有一个独特的要求,我需要两个数据帧的公共(public)列(每行)的平均值。 我想不出这样做的 pythonic 方式。我知道我可以遍历两个数据框并找到公共(public)列,然后获取键匹配的行的平
我把它扔在那里,希望有人会尝试过这种荒谬的事情。我的目标是获取输入图像,并根据每个像素周围小窗口的标准差对其进行分割。基本上,这在数学上应该类似于高斯或盒式过滤器,因为它将应用于编译时(甚至运行时)用
有没有一种方法可以对函数进行向量化处理,使输出成为均值数组,其中每个均值代表输入数组的 0 索引值的均值?循环这个非常简单,但我正在努力尽可能高效。例如0 = 均值(0),1 = 均值(0-1),N
我正在尝试生成均值为 1 的指数分布随机数。我知道如何获取具有均值和标准差的正态分布随机数。我们可以通过normal(mean, standard_deviation)得到它,但是我不知道如何得到指数
我遇到了一段 Python 代码,它的内容类似于以下内容: a = np.array([1,2,3,4,5,6,7]) a array([1, 2, 3, 4, 5, 6, 7]) np.mean(a
我有两个数组。 x 是独立变量,counts 是 x 出现的次数,就像直方图一样。我知道我可以通过定义一个函数来计算平均值: def mean(x,counts): return np.sum
我有在纯 python 中计算平均速度的算法: speed = [...] avg_speed = 0.0 speed_count = 0 for i in speed: if i > 0:
我正在尝试计算扩展窗口的平均值,但是数据结构使得之前的答案至少缺少一点所需的内容(最接近的是:link)。 我的数据看起来像这样: Company TimePeriod IndividualID
我正在尝试实现 Kmeans python中的算法将使用cosine distance而不是欧几里得距离作为距离度量。 我知道使用不同的距离函数可能是致命的,应该小心使用。使用余弦距离作为度量迫使我改
有谁知道自组织映射 (SOM) 与 k 均值相比效果如何?我相信通常在颜色空间(例如 RGB)中,SOM 是将颜色聚类在一起的更好方法,因为视觉上不同的颜色之间的颜色空间存在重叠( http://ww
注意:我希望能得到更多有关如何处理和提出此类解决方案的指南,而不是解决方案本身。 我的系统中有一个非常关键的功能,它在特定上下文中显示为排名第一的分析热点。它处于 k-means 迭代的中间(已经是多
我有一个 pandas 数据框,看起来像这样: 给定行中的每个值要么是相同的数字,要么是 NaN。我想计算数据框中所有两列组合的平均值、中位数和获取计数,其中两列都不是 NaN。 例如,上述数据帧的结
任何人都知道如何调整简单的 K 均值算法来处理 this form 的数据集. 最佳答案 在仍然使用 k-means 的同时处理该形式的数据的最直接方法是使用 k-means 的内核化版本。 JSAT
我是一名优秀的程序员,十分优秀!