- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 GeForce RTX 2060 构建深度学习平台。
我想使用 baselines-stable这还不兼容 tensorflow 2.0。
根据here和 here , tensorflow-gpu-1.15 仅被列为与 CUDA 10.0 兼容,而不是 CUDA 10.1。
尝试从 Nvidia 下载 CUDA,option for Ubuntu 20.04 is not available for CUDA 10.0.
搜索 apt-cache 也不会生成 CUDA 10.0。
$ sudo apt-cache policy nvidia-cuda-toolkit
[sudo] password for lansford:
nvidia-cuda-toolkit:
Installed: (none)
Candidate: 10.1.243-3
Version table:
10.1.243-3 500
500 http://us.archive.ubuntu.com/ubuntu focal/multiverse amd64 Packages
我非常希望不必使用旧版本的 Ubuntu 重新安装操作系统。然而,尝试强化学习是购买这台 PC 的动机。
最佳答案
由于这也困扰着我,我找到了一个我认为比使用 docker 容器更通用的工作解决方案。
主要思想来自here (不向他人索取功劳)。
要为 Ubuntu 20.04 和 TensorFlow 1.15 制定可行的解决方案,需要:
cuda_10.0.130_410.48_linux.run
cuda_10.0.130.1_linux.run
该工具包可以使用提供的说明安全地安装,没有风险,因为每个版本在系统中分配不同的文件夹(通常是
/usr/local/cuda-10.0/
)。
cudnn-10.0-linux-x64-v7.6.5.32.tgz
. $ sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64
$ sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
/etc/profile.d/cuda.sh
其中将包含对 LD_LIBRARY_PATH
的更新多变的。它应该包含如下内容: export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda-11.3/lib64:/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
这个命令通常会完成这项工作:
$ sudo sh -c ‘echo export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda-11.3/lib64:/usr/local/cuda-10.0/lib64:\$LD_LIBRARY_PATH > /etc/profile.d/cuda.sh’
我认为这需要重新启动才能进行评估。无论如何,这样系统将在以下位置搜索相关的so文件:
/usr/local/cuda/lib64
(默认符号链接(symbolic link)),它将失败
/usr/local/cuda-11.3/lib64
并且也会失败但它也会搜索
/usr/local/cuda-10.0/lib64
这将是成功的。
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get install python3.7
这只是将 python3.7 安装到系统中,并没有使其成为默认值。默认是前一个。
virtualenv -p python3.7 ~/tensorflow_1-15
这将创建一个新的
venv
里面有 Python 3.7。
关于tensorflow - 我可以在 Ubuntu 20.04.1 LTS 上安装支持 GPU 的 Tensorflow 1.15 吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63182893/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!