gpt4 book ai didi

regex - 正则表达式中 Kleene 星幂等性的形式化

转载 作者:行者123 更新时间:2023-12-04 18:01:38 30 4
gpt4 key购买 nike

我正在尝试在 Agda 中形式化正则表达式 (RE) 的某些属性。我一直坚持 Kleene 星操作的幂等性证明。

我已经证明了这一点

xs <-[[ (e *) * ]] -> xs <-[[ e * ]]

即如果字符串 xs 是 RE (e *) * 的语言,那么它应该是 e *。我的问题是如何证明对方? (lemmaKleeneIdem 中的漏洞)

xs <-[[ e * ]] -> xs <-[[ (e *) * ]]

这是我的形式化的一部分:

open import Data.List as List
open import Data.List.Properties
open List-solver renaming (nil to :[] ; _⊕_ to _:++_; _⊜_ to _:==_)
open import Data.Product renaming (_×_ to _*_)

open import Relation.Binary
open import Relation.Binary.PropositionalEquality renaming (_≡_ to _==_)
open import Relation.Nullary renaming (¬_ to not)

module Test {Token : Set}(eqTokenDec : Decidable {A = Token} _==_) where

infixr 5 _+_
infixr 6 _o_
infixl 7 _*

data RegExp : Set where
Emp : RegExp
Eps : RegExp
#_ : (a : Token) -> RegExp
_o_ : (e e' : RegExp) -> RegExp
_+_ : (e e' : RegExp) -> RegExp
_* : (e : RegExp) -> RegExp

-- regular expression membership

infix 3 _<-[[_]]
infixr 6 _*_<=_
infixr 6 _<+_ _+>_

data _<-[[_]] : List Token -> RegExp -> Set where
Eps : List.[] <-[[ Eps ]] -- epsilon: empty string
#_ : (a : Token) -> List.[ a ] <-[[ # a ]] -- single token
_*_<=_ : {xs ys zs : List Token}{e e' : RegExp} -- concatenation of two REs
(pr : xs <-[[ e ]])(pr' : ys <-[[ e' ]])
(eq : zs == xs ++ ys) -> zs <-[[ e o e' ]]
_<+_ : {xs : List Token}{e : RegExp}(e' : RegExp) -- choice left
-> (pr : xs <-[[ e ]]) -> xs <-[[ e + e' ]]
_+>_ : {xs : List Token}{e' : RegExp}(e : RegExp) -- choice right
-> (pr : xs <-[[ e' ]]) -> xs <-[[ e + e' ]]
_* : {xs : List Token}{e : RegExp} -> -- Kleene star
xs <-[[ Eps + e o e * ]] ->
xs <-[[ e * ]]


-- regular expression equivalence

infix 4 _:=:_

_:=:_ : forall (e e' : RegExp) -> Set
e :=: e' = forall (xs : List Token) -> (((pr : xs <-[[ e ]]) -> (xs <-[[ e' ]])) *
((pr : xs <-[[ e' ]]) -> (xs <-[[ e ]])))

subsetLemma : forall {xs} e -> xs <-[[ e ]] -> xs <-[[ e * ]]
subsetLemma {xs = xs} e pr = (_ +> pr * ((_ <+ Eps) *) <= solve 1 (\ xs -> xs :== xs :++ :[]) refl xs) *

lemmaKleeneIdem : (e : RegExp) -> e * :=: (e *) *
lemmaKleeneIdem e xs = subsetLemma (e *) , ?

任何关于我应该如何继续完成此证明的提示将不胜感激。

最佳答案

只是分享解决方案:

  lemmaKleeneIdem : (e : RegExp) -> e * :=: (e *) *
lemmaKleeneIdem e xs = subsetLemma (e *) , subsetLemma' e
where
mem : forall {xs e} -> xs <-[[ e ]] -> List _
mem {xs = xs} _ = xs

assoc1 : forall {A : Set}(xs ys zs : List A) -> (xs ++ ys) ++ zs == xs ++ (ys ++ zs)
assoc1 = solve 3 (\ xs ys zs -> (xs :++ ys) :++ zs :== xs :++ (ys :++ zs)) refl

lem' : forall {xs ys zs} e -> zs == xs ++ ys -> xs <-[[ e ]] -> ys <-[[ e * ]] -> zs <-[[ e * ]]
lem' e refl pr pr' = (_ +> pr * pr' <= refl) *

lem : forall {xs ys zs} e -> zs == xs ++ ys -> xs <-[[ e * ]] -> ys <-[[ e * ]] -> zs <-[[ e * ]]
lem e refl ((.(e o e *) <+ Eps) *) q = q
lem e eq ((.Eps +> p * p₁ <= refl) *) q rewrite assoc1 (mem p) (mem p₁) (mem q)
= lem' e eq p (lem e refl p₁ q)

subsetLemma' : forall {xs} e -> xs <-[[ e * * ]] -> xs <-[[ e * ]]
subsetLemma' e ((.(e * o e * *) <+ pr) *) = ((e o e *) <+ pr) *
subsetLemma' e ((.Eps +> pr * pr₁ <= eq) *) = lem e eq pr (subsetLemma' e pr₁)

subsetLemma : forall {xs} e -> xs <-[[ e ]] -> xs <-[[ e * ]]
subsetLemma {xs = xs} e pr = (_ +> pr * ((_ <+ Eps) *) <= solve 1 (\ xs -> xs :== xs :++ :[]) refl xs) *

关于regex - 正则表达式中 Kleene 星幂等性的形式化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34374016/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com