gpt4 book ai didi

pattern-matching - `plus` 类型的 `Nat` 中第二个参数的附加模式匹配

转载 作者:行者123 更新时间:2023-12-04 17:58:29 28 4
gpt4 key购买 nike

我发现 Natplus 函数是在 this way 中实现的

total plus : (n, m : Nat) -> Nat
plus Z right = right
plus (S left) right = S (plus left right)

我想知道是否有特殊原因不对第二个参数进行模式匹配,就像这里一样:

total plus : (n, m : Nat) -> Nat
plus Z right = right
plus left Z = left
plus (S left) right = S (plus left right)

正如我目前所看到的那样,此实现将使许多证明和代码的工作变得更简单。例如

total plusZeroRightNeutral : (left : Nat) -> left + 0 = left
plusZeroRightNeutral Z = Refl
plusZeroRightNeutral (S n) =
let inductiveHypothesis = plusZeroRightNeutral n in
rewrite inductiveHypothesis in Refl

看起来像plusZeroLeftNeutral:

total plusZeroRightNeutral : (left : Nat) -> left + 0 = left
plusZeroRightNeutral left = Refl

在现实生活中我们甚至不需要使用 plusZeroLeftNeutral 定理,因为 Idris 可以自动进行模式匹配(正如这个问题的答案中已经提到的:Concatenation of two vectors - why are lengths not treated as commutative?)。

那么为什么不添加额外的案例让生活更轻松呢?

最佳答案

实际上,plusZeroLeftNeutral 不能仅用Refl 来证明。

当您使用 Refl 时,您是在说:“这通过计算成立”(另一个名称是定义相等性或判断相等性)。

但是我们如何计算 left + 0(即 plus left Z for the Nat type)?本质上,Idris 从上到下逐个子句处理函数定义,在我们的例子中,它首先查看 plus Z right 子句。此时 Idris 需要决定 left 是否为 Z,但它不能,因为我们还没有析构 left。 Idris 不能跳过第一个子句并转到 plus left Z 子句。

现在,有了 plus 的替代定义,就不需要归纳来证明加法的右中性了:

total plusZeroRightNeutral : (left : Nat) -> plus left 0 = left
plusZeroRightNeutral Z = Refl
plusZeroRightNeutral (S _) = Refl

但另一方面,许多证明变得冗长,因为它们现在需要更多的模式匹配。让我们来看看加法的结合性。以下是 plus 原始定义的可能证明:

total plusAssoc : (m,n,p : Nat) -> m + (n + p) = m + n + p
plusAssoc Z n p = Refl
plusAssoc (S m) n p = cong $ plusAssoc m n p

这里作为修改后的plus的相应证明:

total plusAssoc : (m,n,p : Nat) -> m + (n + p) = m + n + p
plusAssoc Z n p = Refl
plusAssoc (S m) Z p = Refl
plusAssoc (S m) (S n) Z = Refl
plusAssoc (S m) (S n) (S p) = cong $ plusAssoc m (S n) (S p)

在这里,您被迫销毁 plus 函数出现的第二个参数,因为它们会阻止求值,但您需要将 S 构造函数移到能够利用您的归纳假设。

关于pattern-matching - `plus` 类型的 `Nat` 中第二个参数的附加模式匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49353735/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com