gpt4 book ai didi

scikit-learn - 如何在 Scikit-learn 管道中访问回归器的权重

转载 作者:行者123 更新时间:2023-12-04 17:54:02 29 4
gpt4 key购买 nike

我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样:

from sklearn.grid_search import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
from sklearn.externals import joblib
import cPickle
import pandas as pd
import os
from create_model import *

estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=create_model, nb_epoch=50, batch_size=5, verbose=0, neurons = 1)))
pipeline = Pipeline(estimators)

然后我通过 GridSearchCv 进行网格搜索以获得最佳拟合,并在变量中获得最佳拟合:

batch_size = [60, 80, 100, 200]
epochs = [2, 4, 6, 8, 10, 50]
neurons = np.arange(3,10,1)
optimizer = ['sgd', 'adam', 'rmsprom']
activation = ['relu', 'tanh']
lr = [0.001, 0.01, 0.1]
param_grid = dict(mlp__neurons = neurons, mlp__batch_size = batch_size, mlp__nb_epoch = epochs, mlp__optimizer = optimizer, mlp__activation = activation, mlp__learn_rate = lr)
grid = GridSearchCV(estimator=pipeline, param_grid=param_grid, cv = kfold,scoring='mean_squared_error')
grid_result = grid.fit(X, Y)
clf = []
clf = grid_result.best_estimator_

clf 变量有 2 个在管道中定义的进程。我的问题是如何通过 get_params 函数提取 keras 回归量的权重和偏差以获得最佳拟合 (clf)?:

clf.get_params()

我找不到这方面的好文档。

最佳答案

权重 = KerasRegressor.model.layers[0].get_weights()[0]biases = KerasRegressor.model.layers[0].get_weights()[1]

关于scikit-learn - 如何在 Scikit-learn 管道中访问回归器的权重,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41979003/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com