- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Spark 来累积员工记录,为此我使用了 Spark 的累加器。我使用 Map[empId, emp] 作为 accumulableCollection 以便我可以通过他们的 ID 搜索员工。我已经尝试了一切,但它不起作用。有人可以指出我使用 accumulableCollection 的方式是否存在任何逻辑问题,或者不支持 Map。以下是我的代码
package demo
import org.apache.spark.{SparkContext, SparkConf, Logging}
import org.apache.spark.SparkContext._
import scala.collection.mutable
object MapAccuApp extends App with Logging {
case class Employee(id:String, name:String, dept:String)
val conf = new SparkConf().setAppName("Employees") setMaster ("local[4]")
val sc = new SparkContext(conf)
implicit def empMapToSet(empIdToEmp: mutable.Map[String, Employee]): mutable.MutableList[Employee] = {
empIdToEmp.foldLeft(mutable.MutableList[Employee]()) { (l, e) => l += e._2}
}
val empAccu = sc.accumulableCollection[mutable.Map[String, Employee], Employee](mutable.Map[String,Employee]())
val employees = List(
Employee("10001", "Tom", "Eng"),
Employee("10002", "Roger", "Sales"),
Employee("10003", "Rafael", "Sales"),
Employee("10004", "David", "Sales"),
Employee("10005", "Moore", "Sales"),
Employee("10006", "Dawn", "Sales"),
Employee("10007", "Stud", "Marketing"),
Employee("10008", "Brown", "QA")
)
System.out.println("employee count " + employees.size)
sc.parallelize(employees).foreach(e => {
empAccu += e
})
System.out.println("empAccumulator size " + empAccu.value.size)
}
最佳答案
使用 accumulableCollection
似乎对您的问题有点矫枉过正,如下所示:
import org.apache.spark.{AccumulableParam, Accumulable, SparkContext, SparkConf}
import scala.collection.mutable
case class Employee(id:String, name:String, dept:String)
val conf = new SparkConf().setAppName("Employees") setMaster ("local[4]")
val sc = new SparkContext(conf)
implicit def mapAccum =
new AccumulableParam[mutable.Map[String,Employee], Employee]
{
def addInPlace(t1: mutable.Map[String,Employee],
t2: mutable.Map[String,Employee])
: mutable.Map[String,Employee] = {
t1 ++= t2
t1
}
def addAccumulator(t1: mutable.Map[String,Employee], e: Employee)
: mutable.Map[String,Employee] = {
t1 += (e.id -> e)
t1
}
def zero(t: mutable.Map[String,Employee])
: mutable.Map[String,Employee] = {
mutable.Map[String,Employee]()
}
}
val empAccu = sc.accumulable(mutable.Map[String,Employee]())
val employees = List(
Employee("10001", "Tom", "Eng"),
Employee("10002", "Roger", "Sales"),
Employee("10003", "Rafael", "Sales"),
Employee("10004", "David", "Sales"),
Employee("10005", "Moore", "Sales"),
Employee("10006", "Dawn", "Sales"),
Employee("10007", "Stud", "Marketing"),
Employee("10008", "Brown", "QA")
)
System.out.println("employee count " + employees.size)
sc.parallelize(employees).foreach(e => {
empAccu += e
})
println("empAccumulator size " + empAccu.value.size)
empAccu.value.foreach(entry =>
println("emp id = " + entry._1 + " name = " + entry._2.name))
虽然目前对此的记录很少,relevant test在 Spark 代码库中非常有启发性。
编辑:事实证明,使用 accumulableCollection
确实具有值(value):您不需要定义 AccumulableParam
和以下作品。我将保留这两种解决方案,以防它们对人们有用。
case class Employee(id:String, name:String, dept:String)
val conf = new SparkConf().setAppName("Employees") setMaster ("local[4]")
val sc = new SparkContext(conf)
val empAccu = sc.accumulableCollection(mutable.HashMap[String,Employee]())
val employees = List(
Employee("10001", "Tom", "Eng"),
Employee("10002", "Roger", "Sales"),
Employee("10003", "Rafael", "Sales"),
Employee("10004", "David", "Sales"),
Employee("10005", "Moore", "Sales"),
Employee("10006", "Dawn", "Sales"),
Employee("10007", "Stud", "Marketing"),
Employee("10008", "Brown", "QA")
)
System.out.println("employee count " + employees.size)
sc.parallelize(employees).foreach(e => {
// notice this is different from the previous solution
empAccu += e.id -> e
})
println("empAccumulator size " + empAccu.value.size)
empAccu.value.foreach(entry =>
println("emp id = " + entry._1 + " name = " + entry._2.name))
这两种解决方案都使用 Spark 1.0.2 进行了测试。
关于scala - Spark accumulableCollection 不适用于 mutable.Map,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25917476/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!