- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 VGG16 运行一些基本的迁移学习代码。我使用的是 Ubuntu 16.04、TensorFlow 1.3 和 Keras,我有 4 个 1080ti GPU。
当我到达这行代码时:
datagen = ImageDataGenerator(rescale=1. / 255)
model = applications.VGG16(include_top=False, weights='imagenet')
nvidia-smi 的输出显示:
Processes: GPU Memory |
| GPU PID Type Process name Usage
| 0 14241 G /usr/lib/xorg/Xorg 256MiB |
| 0 14884 G compiz 155MiB |
| 0 16497 C /home/simon/anaconda3/bin/python 10267MiB |
| 1 16497 C /home/simon/anaconda3/bin/python 10611MiB |
| 2 16497 C /home/simon/anaconda3/bin/python 10611MiB |
| 3 16497 C /home/simon/anaconda3/bin/python 10611MiB |
+-------------------------------------------- ------------------------------+
那么终端的输出是
2017-09-02 15:59:15.946927: E tensorflow/stream_executor/cuda/cuda_dnn.cc:371] could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
2017-09-02 15:59:15.946960: E tensorflow/stream_executor/cuda/cuda_dnn.cc:338] could not destroy cudnn handle: CUDNN_STATUS_BAD_PARAM
2017-09-02 15:59:15.946973: F tensorflow/core/kernels/conv_ops.cc:672] Check failed: stream->parent()->GetConvolveAlgorithms( conv_parameters.ShouldIncludeWinogradNonfusedAlgo<T>(), &algorithms)
我的 jupyter notebook 内核死了。
显然这是一个内存问题,但我不明白为什么我的 GPU 突然被这段代码占用了。我应该补充一点,这个问题是在最近 24 小时内才开始出现的,而且所有这些代码在一天前都运行良好。这里有很多类似问题的答案,但它们都提到了其他运行 TF 的实例(并建议关闭它们)。在我的例子中,这是唯一运行的 TF 应用程序(或任何其他应用程序)。
最佳答案
尝试杀死所有 python 进程,然后删除 ~/.nv 文件夹并再次运行。它对我有同样的错误。
关于TensorFlow:无法创建 cudnn 句柄:CUDNN_STATUS_INTERNAL_ERROR 但没有其他 TF 实例正在运行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46015113/
在 Ubuntu 16.04 上按照标准命令安装 Lua 和其他依赖项: conda install lua=5.2 lua-science -c alexbw 我在行中遇到错误: require '
我正在尝试在 python 3 中创建机器学习。但后来我试图编译我的代码,我在 Cuda 10.0/cuDNN 7.5.0 中遇到了这个错误,有人可以帮我解决这个问题吗? RTX 2080 我在:喀拉
我在安装了 CUDA 7.5 并正常工作的 Ubuntu 系统上使用 Python 和 IDE Pycharm。 我刚刚将 CUDNN 文件与我的常规 CUDA 安装合并。 现在,当我从 Tensor
我正在尝试配置 theano 以在我的 Windows 机器上使用 gpu。我已经将 .theanorc 设置为使用 device= gpu 但是当我运行一些应该使用 gpu 的代码时,我收到以下错误
当我为Windows编译caffe(64位,发行版,2013年,nvidia 750,opencv 3.1,cuDNN版本5.1)时,出现以下错误 "Error 13 error C1083: Can
我正在尝试理解和调试我的代码。我尝试使用在 GPU 上的 tf2.0/tf.keras 下开发的 CNN 模型进行预测,但得到了那些错误消息。 有人可以帮我修吗? 这是我的环境配置 enviromen
我现在在 C++ 中使用 Cuda 有一段时间了,我想试试 cuDNN。我想直接使用 C++,但我大多只能找到基于不同平台(如 Caffè 或 TensorFlow)的示例和教程。这是否意味着我不能在
我不确定这是否是这个问题的正确堆栈交换,但这里是。 我已经安装了最新的 CUDA 驱动程序和 Tensorflow 1.14,但是当我尝试训练卷积层时,Tensorflow 说它找不到实现,因为它无法
我需要找到有关提供给 cudnnConvolutionForward、cudnnConvolutionBackwardData、cudnnConvolutionBackwardFilter 函数系列的
我在尝试运行前馈 torch.nn.Conv2d 时收到此消息,得到以下堆栈跟踪: ----------------------------------------------------------
我正在尝试加载 NSynth 权重,我正在使用 tf 版本 1.7.0 from magenta.models.nsynth import utils from magenta.models.nsyn
我搜索了很多地方,但我得到的只是如何安装它,而不是如何验证它是否已安装。我可以验证我的 NVIDIA 驱动程序是否已安装,并且 CUDA 是否已安装,但我不知道如何验证 CuDNN 是否已安装。非常感
库德恩:https://developer.nvidia.com/cudnn 我登录并完成 NVIDIA 希望您完成的所有任务;然而,当需要下载文件时,我似乎不知道如何通过 wget 和命令行来完成它
我编写了一个简单的应用程序来测试 cudnn rnn api 并检查我的理解是否正确; 代码是这样的, int layernum = 1; int batchnum = 32; int hiddenS
CuDNN 安装程序似乎在查找错误版本的 CUDA。我究竟做错了什么?完整的故事: Ubuntu 16.04 安装了两个版本的 CUDA,9.0 和 9.1。/usr/lib/cuda 链接到 9.1
我有以下基于 Theano example 的代码: from theano import function, config, shared, sandbox import theano.tensor
我在Windows机器(Win10 Pro 64位,i7-7700,8GB内存,GTX-1060-6GB)中使用cupy和Spyder3.3.6和Python 3.7.5。 cupy、chainer、
我正在运行example Keras 的 kaggle_otto_nn.py,后端为 theano。 在下面的打印输出中,第 5 行,有这样的内容: CNMeM is enabled with ini
cuDNN 安装手册说 ALL PLATFORMS Extract the cuDNN archive to a directory of your choice, referred to below
我正在使用 ubuntu 20.04 并安装了 anaconda。根据this instruction ,我通过 conda create -n tf tensorflow-gpu 创建一个环境 在安
我是一名优秀的程序员,十分优秀!