gpt4 book ai didi

python-3.x - Py4JJavaError : An error occurred while calling o37. 显示字符串。 Spark & python 3

转载 作者:行者123 更新时间:2023-12-04 17:42:08 29 4
gpt4 key购买 nike

我是一名学生我真的被Py4JJavaError这个问题困扰了两个星期,在互联网上没有太多;我真的需要帮助:

我遵循本教程:https://learn.microsoft.com/fr-fr/azure/hdinsight/spark/apache-spark-machine-learning-mllib-ipython

当我从 RDD 中检索一行以便能够观察数据模式时,如 inspections.take(1)df.show(5) 我遇到这个错误

> Py4JJavaError                             Traceback (most recent call
> last) <ipython-input-13-eb589bae8d4b> in <module>()
> ----> 1 df.show(5)
>
> ~/anaconda3/lib/python3.6/site-packages/pyspark/sql/dataframe.py in
> show(self, n, truncate, vertical)
> 376 """
> 377 if isinstance(truncate, bool) and truncate:
> --> 378 print(self._jdf.showString(n, 20, vertical))
> 379 else:
> 380 print(self._jdf.showString(n, int(truncate), vertical))
>
> ~/anaconda3/lib/python3.6/site-packages/py4j/java_gateway.py in
> __call__(self, *args) 1255 answer = self.gateway_client.send_command(command) 1256 return_value
> = get_return_value(
> -> 1257 answer, self.gateway_client, self.target_id, self.name) 1258 1259 for temp_arg in temp_args:
>
> ~/anaconda3/lib/python3.6/site-packages/pyspark/sql/utils.py in
> deco(*a, **kw)
> 61 def deco(*a, **kw):
> 62 try:
> ---> 63 return f(*a, **kw)
> 64 except py4j.protocol.Py4JJavaError as e:
> 65 s = e.java_exception.toString()
>
> ~/anaconda3/lib/python3.6/site-packages/py4j/protocol.py in
> get_return_value(answer, gateway_client, target_id, name)
> 326 raise Py4JJavaError(
> 327 "An error occurred while calling {0}{1}{2}.\n".
> --> 328 format(target_id, ".", name), value)
> 329 else:
> 330 raise Py4JError(
>
> Py4JJavaError: An error occurred while calling o37.showString. :
> org.apache.spark.SparkException: Job aborted due to stage failure:
> Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0
> in stage 0.0 (TID 0, localhost, executor driver):
> org.apache.spark.api.python.PythonException: Traceback (most recent
> call last): File
> "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py",
> line 372, in main
> process() File "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py",
> line 367, in process
> serializer.dump_stream(func(split_index, iterator), outfile) File
> "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py",
> line 390, in dump_stream
> vs = list(itertools.islice(iterator, batch)) File "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/util.py",
> line 100, in wrapper
> return f(*args, **kwargs) File "<ipython-input-10-9aa45565a8c1>", line 3, in csvParse
> ModuleNotFoundError: No module named 'StringIO'
>
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:588)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
> at
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
> at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440) at
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) at
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) at
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
> Source) at
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> at
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at
> org.apache.spark.scheduler.Task.run(Task.scala:121) at
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
> at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
> at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
>
> Driver stacktrace: at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
> at scala.Option.foreach(Option.scala:257) at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
> at
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061) at
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2082) at
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2101) at
> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
> at
> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
> at
> org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3384)
> at
> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2545)
> at
> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2545)
> at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3365)
> at
> org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
> at
> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
> at
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
> at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3364) at
> org.apache.spark.sql.Dataset.head(Dataset.scala:2545) at
> org.apache.spark.sql.Dataset.take(Dataset.scala:2759) at
> org.apache.spark.sql.Dataset.getRows(Dataset.scala:255) at
> org.apache.spark.sql.Dataset.showString(Dataset.scala:292) at
> sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:483) at
> py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at
> py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at
> py4j.Gateway.invoke(Gateway.java:282) at
> py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
> at py4j.commands.CallCommand.execute(CallCommand.java:79) at
> py4j.GatewayConnection.run(GatewayConnection.java:238) at
> java.lang.Thread.run(Thread.java:745) Caused by:
> org.apache.spark.api.python.PythonException: Traceback (most recent
> call last): File
> "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py",
> line 372, in main
> process() File "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py",
> line 367, in process
> serializer.dump_stream(func(split_index, iterator), outfile) File
> "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py",
> line 390, in dump_stream
> vs = list(itertools.islice(iterator, batch)) File "/Users/sabbar/anaconda3/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/util.py",
> line 100, in wrapper
> return f(*args, **kwargs) File "<ipython-input-10-9aa45565a8c1>", line 3, in csvParse
> ModuleNotFoundError: No module named 'StringIO'
>
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:588)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
> at
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
> at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440) at
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) at
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) at
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
> Source) at
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> at
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:255)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at
> org.apache.spark.scheduler.Task.run(Task.scala:121) at
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
> at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
> at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> ... 1 more

代码如下:

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.sql import Row
from pyspark.sql.functions import UserDefinedFunction
from pyspark.sql.types import *
import pyspark
#from pyspark import SparkContext
#sc = SparkContext("local", "Simple App")
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from py4j.protocol import Py4JJavaError

def csvParse(s):
import csv
from StringIO import StringIO
sio = StringIO(s)
value = csv.reader(sio).next()
sio.close()
return value

inspections = sc.textFile('Chicago_Street_Names.csv').map(csvParse)

inspections.take(1)

请帮助我这是下周要做的项目

最佳答案

正如@pault 在评论中建议的那样,您无需编写自己的函数来解析简单的 csv 文件。您可以使用 sc.read.csv(FILEPATH)

如果你想按原样继续你的功能,那么你可以更换from StringIO import StringIOfrom io import StringIOStringIO package 在较新的 Python 3 版本中已被替换为 io package

关于python-3.x - Py4JJavaError : An error occurred while calling o37. 显示字符串。 Spark & python 3,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53966504/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com