gpt4 book ai didi

dask - 将 xarray 与自定义函数一起使用并重新采样

转载 作者:行者123 更新时间:2023-12-04 17:30:19 30 4
gpt4 key购买 nike

我正在尝试获取一个数组并使用自定义函数对其重新采样。来自这篇文章:Apply function along time dimension of XArray

def special_mean(x, drop_min=False):
s = np.sum(x)
n = len(x)
if drop_min:
s = s - x.min()
n -= 1
return s/n

是示例 sample_mean。

我有一个数据集是:

<xarray.Dataset>
Dimensions: (lat: 100, lon: 130, time: 7305)
Coordinates:
* lon (lon) float32 -99.375 -99.291664 -99.208336 ... -88.708336 -88.625
* lat (lat) float32 49.78038 49.696426 49.61247 ... 41.552795 41.46884
lev float32 1.0
* time (time) datetime64[ns] 2040-01-01 2040-01-02 ... 2059-12-31
Data variables:
tmin (time, lat, lon) float32 dask.array<chunksize=(366, 100, 130), meta=np.ndarray>
tmax (time, lat, lon) float32 dask.array<chunksize=(366, 100, 130), meta=np.ndarray>
prec (time, lat, lon) float32 dask.array<chunksize=(366, 100, 130), meta=np.ndarray>
relh (time, lat, lon) float32 dask.array<chunksize=(366, 100, 130), meta=np.ndarray>
wspd (time, lat, lon) float32 dask.array<chunksize=(366, 100, 130), meta=np.ndarray>
rads (time, lat, lon) float32 dask.array<chunksize=(366, 100, 130), meta=np.ndarray>
Attributes:
history: Fri Jun 14 10:32:22 2019: ncatted -a _FillValue,,o,d,9e+20 IBIS...

然后我应用一个重采样:

data.resample(time='1MS').map(special_mean)


<xarray.Dataset>
Dimensions: (time: 240)
Coordinates:
* time (time) datetime64[ns] 2040-01-01 2040-02-01 ... 2059-12-01
lev float32 1.0
Data variables:
tmin (time) float32 dask.array<chunksize=(1,), meta=np.ndarray>
tmax (time) float32 dask.array<chunksize=(1,), meta=np.ndarray>
prec (time) float32 dask.array<chunksize=(1,), meta=np.ndarray>
relh (time) float32 dask.array<chunksize=(1,), meta=np.ndarray>
wspd (time) float32 dask.array<chunksize=(1,), meta=np.ndarray>
rads (time) float32 dask.array<chunksize=(1,), meta=np.ndarray>

如何执行此功能,以便我可以像执行操作时一样保留“lon”和“lat”坐标

data.resample(time='1MS').mean()

最佳答案

这是一个如何使用 xr.apply_ufunc() 的示例。

import xarray as xr
data = xr.tutorial.open_dataset('air_temperature')

def special_mean(x, drop_min=False):
s = np.sum(x)
n = len(x)
if drop_min:
s = s - x.min()
n -= 1
return s/n

def special_func(data):
return xr.apply_ufunc(special_mean, data, input_core_dims=[["time"]],
kwargs={'drop_min': True}, dask = 'allowed', vectorize = True)

data.resample(time='1MS').apply(special_func)

<xarray.Dataset>
Dimensions: (lat: 25, lon: 53, time: 24)
Coordinates:
* time (time) datetime64[ns] 2013-01-01 2013-02-01 ... 2014-12-01
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
* lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
Data variables:
air (time, lat, lon) float64 244.6 244.7 244.7 ... 297.7 297.7 297.7

关于dask - 将 xarray 与自定义函数一起使用并重新采样,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60343165/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com