- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我对 keras 调谐器和 tpu 有一些问题。当我运行下面的代码时,一切正常,网络训练速度很快。
vocab_size = 5000
embedding_dim = 64
max_length = 2000
def create_model():
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, embedding_dim),
tf.keras.layers.LSTM(100, dropout=0.5, recurrent_dropout=0.5),
tf.keras.layers.Dense(embedding_dim, activation='relu'),
tf.keras.layers.Dense(4, activation='softmax')
])
return model
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
with strategy.scope():
model = create_model()
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['sparse_categorical_accuracy'])
model.fit(train_padded, y_train,
epochs=10,
validation_split=0.15,
verbose=1, batch_size=128)
vocab_size = 5000
max_length = 2000
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
def build_model(hp):
model = tf.keras.Sequential()
activation_choice = hp.Choice('activation', values=['relu', 'sigmoid', 'tanh', 'elu', 'selu'])
embedding_dim = hp.Int('units_hidden', min_value=128, max_value=24, step=8)
model.add(tf.keras.layers.Embedding(vocab_size, embedding_dim))
model.add(tf.keras.layers.LSTM(hp.Int('LSTM_Units', min_value=50, max_value=500, step=10),
dropout=hp.Float('dropout', 0, 0.5, step=0.1, default=0),
recurrent_dropout=hp.Float('recurrent_dropout', 0, 0.5, step=0.1, default=0)))
model.add(tf.keras.layers.Dense(embedding_dim, activation=activation_choice))
model.add(tf.keras.layers.Dense(4, activation='softmax'))
model.compile(
optimizer=hp.Choice('optimizer', values=['adam', 'rmsprop', 'SGD']),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['sparse_categorical_accuracy'])
return model
with strategy.scope():
tuner = Hyperband(
build_model,
objective='val_accuracy',
max_epochs=10,
hyperband_iterations=2)
tuner.search(train_padded, y_train,
batch_size=128,
epochs=10,
callbacks=[EarlyStopping(patience=1)],
validation_split=0.15,
verbose=1)
best_models = tuner.get_best_models(1)
best_model.save('/content/drive/My Drive/best_model.h5')
最佳答案
您需要将其传递给调谐器:
tuner = Hyperband(
build_model,
objective='val_accuracy',
max_epochs=10,
hyperband_iterations=2,
distribution_strategy=strategy,)
(并删除 strategy.scope() 部分)
关于python - Google Colab 中的 Keras 调谐器和 TPU,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61987328/
按照 Get Started with Edge TPU Dev Board 上的说明进行操作,我无法通过第 2 步: $ screen /dev/ttyUSB0 115200 问题是屏幕立即返回 [
我正在尝试使用 TPU 在 google colab 上进行一些基本的字符分类。我收到以下错误: InvalidArgumentError: Unsupported data type for TPU
我的数据集很大(大约 13gb)。我有一个数据集的 hdf5 文件,我正在使用自定义生成器从数据集中加载批处理。我的模型在 Kaggle GPU 上运行良好,但当我切换到 TPU 时出现错误。下面是我
我正在使用预训练的 keras 模型,我想在 Google Colaboratory 的 TPU 上运行它,但出现以下错误: ValueError: Layer has a variable shap
CPU即中央处理器(Central Processing Unit) GPU即图形处理器(Graphics Processing Unit) TPU即谷歌的张量处理器(Tens
如何在 Google Colab 中打印我正在使用的 TPU 版本以及 TPU 有多少内存? 我得到以下输出 tpu = tf.distribute.cluster_resolver.TPUClust
我正在尝试使用 TPU client API 创建 Google Cloud TPU 节点我无法找出 Google Cloud 中 TPU 节点的父资源名称。 下面你可以找到我用来创建节点的完整代码,
无论我们是使用 Google Colab 还是直接访问 Cloud TPU,以下程序仅提供有关底层 TPU 的有限信息: import os import tensorflow as tf tpu_a
我试图在 TPU 上乘以 3000 个独立的矩阵和向量以加快计算速度,但我遇到了一些问题。我无法得到最终结果,我也很感兴趣是否有更好的解决方案。 代码如下: import time import nu
我正在尝试使用 TPU 在 Colab 上训练和运行图像分类模型。没有pytorch。 我知道 TPU 仅适用于来自 GCS 存储桶的文件,因此我从存储桶加载数据集,并且还评论了检查点和日志记录功能,
我正在关注 Google's object detection on a TPU发布并在培训方面碰壁。 查看作业日志,我可以看到 ml-engine 为各种软件包运行了大量 pip 安装,配置了 TP
我正在尝试使用 pytorch_xla 使用 TPU,但它在 _XLAC 中显示导入错误。 !curl https://raw.githubusercontent.com/pytorch/xla/ma
我正在训练一个模型,当我在 Google Cloud Platform 控制台中打开 TPU 时,它会向我显示 CPU 利用率(我想是在 TPU 上)。它真的非常非常低(比如 0.07%),所以也许是
我有 100k 张照片,它不适合内存,所以我需要在训练时从光盘读取它。 dataset = tf.data.Dataset.from_tensor_slices(in_pics) dataset =
我刚刚在 Google Colab 中尝试使用 TPU,我想看看 TPU 比 GPU 快多少。令人惊讶的是,我得到了相反的结果。 以下是NN。 random_image = tf.random_n
我正在尝试将 keras 模型转换为 google colab 中的 tpu 模型,但该模型内部有另一个模型。 看一下代码: https://colab.research.google.com/dri
我正在尝试在 Google 云上使用 TPU,并且正在尝试弄清楚如何指定要使用的正确 TPU。我正在尝试遵循快速入门 https://cloud.google.com/tpu/docs/quickst
我编写的代码可以在 GPU 上运行,但实验的周转时间很长。我想移植这段代码,以便可以在 TPU 上运行它。我怎么能这样做?这就是我所拥有的。 Bunch of datloading stuff !!!
我如何在 colab 上查看 TPU 的规范,对于 GPU,我可以使用类似的命令 nvidia-smi 但它不适用于 TPU,我如何查看 TPU 的规范? 最佳答案 我找不到来源。但据说 Colab
以 TPU 可接受的方式缓存/生成数据集的最佳策略是什么? 到目前为止,我设法在自己创建的数据集上训练 tensorflow 模型。每个数据点都基于大型时间序列进行大量设计,使用基于 numpy、pa
我是一名优秀的程序员,十分优秀!