- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在类作业中遇到了一个简单的 CUDA 问题,但教授添加了一个可选任务来使用共享内存来实现相同的算法。我无法在截止日期之前完成它(因为上交日期是一周前),但我仍然很好奇,所以现在我要上网 ;)。
基本任务是在顺序和 CUDA 中实现红黑连续过度松弛的 SCSS 版本,确保在两者中获得相同的结果,然后比较加速。就像我说的,使用共享内存来做是一个可选的 +10% 附加组件。
我将发布我的工作版本和我尝试做的伪代码,因为我目前没有代码,但如果有人需要,我可以稍后用实际代码更新它。
在任何人说出来之前:是的,我知道使用 CUtil 是蹩脚的,但它使比较和计时器更容易。
工作全局内存版本:
#include <stdlib.h>
#include <stdio.h>
#include <cutil_inline.h>
#define N 1024
__global__ void kernel(int *d_A, int *d_B) {
unsigned int index_x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int index_y = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index
unsigned int grid_width = gridDim.x * blockDim.x;
unsigned int index = index_y * grid_width + index_x;
// check for boundaries and write out the result
if((index_x > 0) && (index_y > 0) && (index_x < N-1) && (index_y < N-1))
d_B[index] = (d_A[index-1]+d_A[index+1]+d_A[index+N]+d_A[index-N])/4;
}
main (int argc, char **argv) {
int A[N][N], B[N][N];
int *d_A, *d_B; // These are the copies of A and B on the GPU
int *h_B; // This is a host copy of the output of B from the GPU
int i, j;
int num_bytes = N * N * sizeof(int);
// Input is randomly generated
for(i=0;i<N;i++) {
for(j=0;j<N;j++) {
A[i][j] = rand()/1795831;
//printf("%d\n",A[i][j]);
}
}
cudaEvent_t start_event0, stop_event0;
float elapsed_time0;
CUDA_SAFE_CALL( cudaEventCreate(&start_event0) );
CUDA_SAFE_CALL( cudaEventCreate(&stop_event0) );
cudaEventRecord(start_event0, 0);
// sequential implementation of main computation
for(i=1;i<N-1;i++) {
for(j=1;j<N-1;j++) {
B[i][j] = (A[i-1][j]+A[i+1][j]+A[i][j-1]+A[i][j+1])/4;
}
}
cudaEventRecord(stop_event0, 0);
cudaEventSynchronize(stop_event0);
CUDA_SAFE_CALL( cudaEventElapsedTime(&elapsed_time0,start_event0, stop_event0) );
h_B = (int *)malloc(num_bytes);
memset(h_B, 0, num_bytes);
//ALLOCATE MEMORY FOR GPU COPIES OF A AND B
cudaMalloc((void**)&d_A, num_bytes);
cudaMalloc((void**)&d_B, num_bytes);
cudaMemset(d_A, 0, num_bytes);
cudaMemset(d_B, 0, num_bytes);
//COPY A TO GPU
cudaMemcpy(d_A, A, num_bytes, cudaMemcpyHostToDevice);
// create CUDA event handles for timing purposes
cudaEvent_t start_event, stop_event;
float elapsed_time;
CUDA_SAFE_CALL( cudaEventCreate(&start_event) );
CUDA_SAFE_CALL( cudaEventCreate(&stop_event) );
cudaEventRecord(start_event, 0);
// TODO: CREATE BLOCKS AND THREADS AND INVOKE GPU KERNEL
dim3 block_size(256,1,1); //values experimentally determined to be fastest
dim3 grid_size;
grid_size.x = N / block_size.x;
grid_size.y = N / block_size.y;
kernel<<<grid_size,block_size>>>(d_A,d_B);
cudaEventRecord(stop_event, 0);
cudaEventSynchronize(stop_event);
CUDA_SAFE_CALL( cudaEventElapsedTime(&elapsed_time,start_event, stop_event) );
//COPY B BACK FROM GPU
cudaMemcpy(h_B, d_B, num_bytes, cudaMemcpyDeviceToHost);
// Verify result is correct
CUTBoolean res = cutComparei( (int *)B, (int *)h_B, N*N);
printf("Test %s\n",(1 == res)?"Passed":"Failed");
printf("Elapsed Time for Sequential: \t%.2f ms\n", elapsed_time0);
printf("Elapsed Time for CUDA:\t%.2f ms\n", elapsed_time);
printf("CUDA Speedup:\t%.2fx\n",(elapsed_time0/elapsed_time));
cudaFree(d_A);
cudaFree(d_B);
free(h_B);
cutilDeviceReset();
}
#define N 1024
__global__ void kernel(int *d_A, int *d_B, int width) {
//assuming width is 64 because that's the biggest number I can make it
//each MP has 48KB of shared mem, which is 12K ints, 32 threads/warp, so max 375 ints/thread?
__shared__ int A_sh[3][66];
//get x and y index and turn it into linear index
for(i=0; i < width+2; i++) //have to load 2 extra values due to the -1 and +1 in algo
A_sh[index_y%3][i] = d_A[index+i-1]; //so A_sh[index_y%3][0] is actually d_A[index-1]
__syncthreads(); //and hope that previous and next row have been loaded by other threads in the block?
//ignore boundary conditions because it's pseudocode
for(i=0; i < width; i++)
d_B[index+i] = A_sh[index_y%3][i] + A_sh[index_y%3][i+2] + A_sh[index_y%3-1][i+1] + A_sh[index_y%3+1][i+1];
}
main(){
//same init as above until threads/grid init
dim3 threadsperblk(32,16);
dim3 numblks(32,64);
kernel<<<numblks,threadsperblk>>>(d_A,d_B,64);
//rest is the same
}
最佳答案
在 CUDA 中充分利用这些模板运算符的关键是数据重用。我发现最好的方法通常是让每个块“走过”网格的一个维度。在块将初始数据块加载到共享内存后,只需要从全局内存中读取一个维度(因此行主序二维问题中的行),以便在共享内存中为第二个和后续提供必要的数据行计算。其余的数据可以重复使用。为了可视化共享内存缓冲区如何查看此类算法的前四个步骤:
template<int width>
__device__ void rowfetch(int *in, int *out, int col)
{
*out = *in;
if (col == 1) *(out-1) = *(in-1);
if (col == width) *(out+1) = *(in+1);
}
template<int width>
__global__ operator(int *in, int *out, int nrows, unsigned int lda)
{
// shared buffer holds three rows x (width+2) cols(threads)
__shared__ volatile int buffer [3][2+width];
int colid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x + 1;
int * rowpos = &in[colid], * outpos = &out[colid];
// load the first three rows (compiler will unroll loop)
for(int i=0; i<3; i++, rowpos+=lda) {
rowfetch<width>(rowpos, &buffer[i][tid], tid);
}
__syncthreads(); // shared memory loaded and all threads ready
int brow = 0; // brow is the next buffer row to load data onto
for(int i=0; i<nrows; i++, rowpos+=lda, outpos+=lda) {
// Do stencil calculations - use the value of brow to determine which
// stencil to use
result = ();
// write result to outpos
*outpos = result;
// Fetch another row
__syncthreads(); // Wait until all threads are done calculating
rowfetch<width>(rowpos, &buffer[brow][tid], tid);
brow = (brow < 2) ? (brow+1) : 0; // Increment or roll brow over
__syncthreads(); // Wait until all threads have updated the buffer
}
}
关于CUDA:在大型二维阵列上共享内存,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5794617/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!