gpt4 book ai didi

python - Holoviews Heatmap 为每个点指定颜色

转载 作者:行者123 更新时间:2023-12-04 17:24:15 27 4
gpt4 key购买 nike

我正在尝试在 Holoviews 中为每个点生成一个具有自定义颜色值的热图,以便指定不同的 alpha 颜色值。

目前我正在生成两个具有不同 alpha 值的 Holoviews 图并像这样叠加它们:

data = pd.DataFrame([(i, 97+j,  i*j) for i in range(5) for j in range(5)], 
columns=['x', 'y', 'val'])
data_filtered = data[(data.x < 3) & (data.y < 100)]

hm_opts = dict(kdims=['x', 'y'], vdims=['val'])
hm = hv.HeatMap(data, **hm_opts).opts(alpha=0.5)
hm_filtered = hv.HeatMap(data_filtered, **hm_opts).opts()
hm * hm_filtered

Plot

然而,这给了我一个 Holoviews Overlay 对象,我想在其中有一个 HeatMap 对象。

我的想法是将每个 x/y 坐标映射到十六进制形式的特定颜色值,其中已经计算了所需的 alpha。因此,我的 DataFrame 看起来像这样(示例):

    x    y  val    color
0 0 97 0 #00FF00
1 0 98 0 #00FF00
2 0 99 0 #00FF00
...
22 4 99 8 #FFD29F
23 4 100 12 #FFB89F
24 4 101 16 #D3AFF4

有没有办法告诉 Holoviews 使用这些颜色?当我将颜色列表传递给“cmap”参数时,它会将其解释为颜色间隔,传递列的名称会引发错误,因为它找不到指定的 cmap。

当我将列表传递给“color”参数时,Jupyter Notebook 中根本不再显示该图。

编辑

我找到了一种直接使用 Bokeh 库来获得我想要的东西的方法。 Bokeh 也是我在 Holviews 中使用的后端。这是代码和结果图。

source = ColumnDataSource(
data=data
)
x_unique = data['x'].unique()
y_unique = data['y'].unique()
min_width = 110
min_height = 80
width = min_width + 25 * len(x_unique)
height = min_height + 25 * len(y_unique)
x_rect_width = 0.90
y_rect_width = 0.90
plot = figure(
plot_width=width,
plot_height=height,
title='',
x_range=FactorRange(*x_unique),
y_range=FactorRange(*y_unique),
x_axis_label='x',
y_axis_label='y',
)
plot.rect('x', 'y', height=y_rect_width, width=x_rect_width, source=source, color='color')
plot.xgrid.grid_line_color = None
plot.ygrid.grid_line_color = None

show(plot)

Plot2

Bokeh 允许将颜色列名称传递给 rect 函数的“颜色”参数。不管怎样,我仍然喜欢将它作为 Holoviews 容器,这样我就可以将它结合起来并在其上构建交互式应用程序。

解决方案

在@thomas-pedot 的回答的帮助下,我找到了一个看起来像我正在寻找的解决方案:

data = pd.DataFrame([(i, 97+j,  i*j) for i in range(5) for j in range(5)], 
columns=['x', 'y', 'val'])
data = data.assign(alpha=((data.x < 3) & (data.y < 100)).replace({True: 1.0, False: 3/8}))
red = '#FF0000'
yellow = '#FFFF00'
green = '#00FF00'
blue_violet = '#8A2BE2'
max_cout = data.loc[:, column].max()
levels = [0, 1, max_cout / 2, max_cout - 1, max_cout]
colors = [green, yellow, red, blue_violet]
hm_opts = dict(kdims=['x', 'y'], vdims=['val', 'alpha'])
hm = hv.HeatMap(data, **hm_opts).opts(
alpha=hv.dim('alpha'),
color_levels=levels,
cmap=colors)
hm

Solution

最佳答案

import pandas as pd
import holoviews as hv
import matplotlib as mpl
hv.extension('matplotlib')

data = pd.DataFrame([(i, 97+j, i*j) for i in range(5) for j in range(5)],
columns=['x', 'y', 'val'])
data_filtered = data[(data.x < 3) & (data.y < 100)]

cmap1 = mpl.colors.ListedColormap(['#00FF00', '#FFB89F', '#D3AFF4'])
hm_opts = dict(kdims=['x', 'y'], vdims=['val'])
hm = hv.HeatMap(data, **hm_opts).opts(alpha=0.5, cmap=cmap1)

结果:

results

我添加了 cmap1 = mpl.colors.ListedColormap(['#00FF00', '#FFB89F', '#D3AFF4']) 行,它允许您指定所需的颜色。如果您将其更新为颜色列表(整个热图范围内的列表),那么它将完全符合您的要求。我想你可以在你的情况下使用 df["color"] (也许先直接转换为列表,但没问题)

注意我还添加了 cmap=cmap1 参数到 heatmap' opt

我假设您在后台使用 matplotlib,因为您没有另外指定。

关于python - Holoviews Heatmap 为每个点指定颜色,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64427909/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com