作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Keras 为 224x224x3 大小的图像开发用于人脸识别的连体网络。 Siamese 网络的架构是这样的:
对于 CNN 模型,我正在考虑使用已经在 Keras.applications 模块中预训练的 InceptionV3 模型。
#Assume all the other modules are imported correctly
from keras.applications.inception_v3 import InceptionV3
IMG_SHAPE=(224,224,3)
def return_siamese_net():
left_input=Input(IMG_SHAPE)
right_input=Input(IMG_SHAPE)
model1=InceptionV3(include_top=False, weights="imagenet", input_tensor=left_input) #Left SubConvNet
model2=InceptionV3(include_top=False, weights="imagenet", input_tensor=right_input) #Right SubConvNet
#Do Something here
distance_layer = #Do Something
prediction = Dense(1,activation='sigmoid')(distance_layer) # Outputs 1 if the images match and 0 if it does not
siamese_net = #Do Something
return siamese_net
model=return_siamese_net()
因为模型是预训练的,所以我得到了错误,现在我坚持为孪生网络实现距离层。
最佳答案
一个非常重要的注意事项,在使用距离层之前,要考虑到您只有一个卷积神经网络。
共享权重实际上仅指一个卷积神经网络,权重是共享的,因为在传递一对图像时使用相同的权重(取决于使用的损失函数),以便计算每个输入的特征以及随后的嵌入图片。
您将只有一个神经网络,并且块逻辑需要如下所示:
def euclidean_distance(vectors):
(features_A, features_B) = vectors
sum_squared = K.sum(K.square(features_A - features_B), axis=1, keepdims=True)
return K.sqrt(K.maximum(sum_squared, K.epsilon()))
image_A = Input(shape=...)
image_B = Input(shape=...)
feature_extractor_model = get_feature_extractor_model(shape=...)
features_A = feature_extractor(image_A)
features_B = feature_extractor(image_B)
distance = Lambda(euclidean_distance)([features_A, features_B])
outputs = Dense(1, activation="sigmoid")(distance)
siamese_model = Model(inputs=[image_A, image_B], outputs=outputs)
当然,特征提取器模型可以是来自 Keras/TensorFlow 的预训练网络,并改进了输出分类层。
关于python - 如何在 Keras 中使用预训练的 CNN 实现 Siamese 网络?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65608072/
我是一名优秀的程序员,十分优秀!