- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试使用 tidymodels 来调整配方和模型参数的工作流程。调整单个工作流时没有问题。但是当使用多个工作流调整工作流集时,它总是失败。这是我的代码:
# read the training data
train <- read_csv("../../train.csv")
train <- train %>%
mutate(
id = row_number(),
across(where(is.double), as.integer),
across(where(is.character), as.factor),
r_yn = fct_relevel(r_yn, "yes")) %>%
select(id, r_yn, everything())
# setting the recipes
# no precess
rec_no <- recipe(r_yn ~ ., data = train) %>%
update_role(id, new_role = "ID")
# downsample: tuning the under_ratio
rec_ds_tune <- rec_no %>%
step_downsample(r_yn, under_ratio = tune(), skip = TRUE, seed = 100) %>%
step_nzv(all_predictors(), freq_cut = 100)
# setting the models
# randomforest
spec_rf_tune <- rand_forest(trees = 100, mtry = tune(), min_n = tune()) %>%
set_engine("ranger", seed = 100) %>%
set_mode("classification")
# xgboost
spec_xgb_tune <- boost_tree(trees = 100, mtry = tune(), tree_depth = tune(), learn_rate = tune(), min_n = tune()) %>%
set_engine("xgboost") %>%
set_mode("classification")
# setting the workflowsets
wf_tune_list <- workflow_set(
preproc = list(no = rec_no, ds = rec_ds_tune),
models = list(rf = spec_rf_tune, xgb = spec_xgb_tune),
cross = TRUE)
# finalize the parameters, I'm not sure it is correct or not
rf_params <- spec_rf_tune %>% parameters() %>% update(mtry = mtry(c(1, 15)))
xgb_params <- spec_xgb_tune %>% parameters() %>% update(mtry = mtry(c(1, 15)))
ds_params <- rec_ds_tune %>% parameters() %>% update(under_ratio = under_ratio(c(1, 5)))
wf_tune_list_finalize <- wf_tune_list %>%
option_add(param = ds_params, id = c("ds_rf", "ds_xgb")) %>%
option_add(param = rf_params, id = c("no_rf", "ds_rf")) %>%
option_add(param = xgb_params, id = c("no_xgb", "ds_xgb"))
我查了
选项 在
wf_tune_list_finalize 表明:
> wf_tune_list_finalize$option
[[1]]
a list of options with names: 'param'
[[2]]
a list of options with names: 'param'
[[3]]
a list of options with names: 'param'
[[4]]
a list of options with names: 'param'
然后我调整这个工作流集:
# tuning the workflowset
cl <- makeCluster(detectCores())
registerDoParallel(cl)
wf_tune_race <- wf_tune_list_finalize %>%
workflow_map(fn = "tune_race_anova",
seed = 100,
resamples = cv_5,
grid = 3,
metrics = metric_auc,
control = control_race(parallel_over = "everything"),
verbose = TRUE)
stopCluster(cl)
详细消息表明我的工作流程中的参数有问题
ds_rf 和
ds_xgb :
i 1 of 4 tuning: no_rf
i Creating pre-processing data to finalize unknown parameter: mtry
�� 1 of 4 tuning: no_rf (1m 44.4s)
i 2 of 4 tuning: no_xgb
i Creating pre-processing data to finalize unknown parameter: mtry
�� 2 of 4 tuning: no_xgb (28.9s)
i 3 of 4 tuning: ds_rf
x 3 of 4 tuning: ds_rf failed with: Some tuning parameters require finalization but there are recipe parameters that require tuning. Please use `parameters()` to finalize the parameter ranges.
i 4 of 4 tuning: ds_xgb
x 4 of 4 tuning: ds_xgb failed with: Some tuning parameters require finalization but there are recipe parameters that require tuning. Please use `parameters()` to finalize the parameter ranges.
结果是:
> wf_tune_race
# A workflow set/tibble: 4 x 4
wflow_id info option result
<chr> <list> <list> <list>
1 no_rf <tibble [1 x 4]> <wrkflw__ > <race[+]>
2 no_xgb <tibble [1 x 4]> <wrkflw__ > <race[+]>
3 ds_rf <tibble [1 x 4]> <wrkflw__ > <try-errr [1]>
4 ds_xgb <tibble [1 x 4]> <wrkflw__ > <try-errr [1]>
更重要的是,虽然
no_rf 和
no_xgb 有调优结果,我发现
的范围mtry 这两个工作流中的范围不是我上面设置的范围,这意味着参数范围设置步骤完全失败。我遵循了
https://www.tmwr.org/workflow-sets.html 中的教程和
https://workflowsets.tidymodels.org/但仍然没有想法。
最佳答案
我修改了参数设置步骤,现在调优结果是正确的:
# setting the parameters on each workflow seperately
no_rf_params <- wf_set_tune_list %>%
extract_workflow("no_rf") %>%
parameters() %>%
update(mtry = mtry(c(1, 15)))
no_xgb_params <- wf_set_tune_list %>%
extract_workflow("no_xgb") %>%
parameters() %>%
update(mtry = mtry(c(1, 15)))
ds_rf_params <- wf_set_tune_list %>%
extract_workflow("ds_rf") %>%
parameters() %>%
update(mtry = mtry(c(1, 15)), under_ratio = under_ratio(c(1, 5)))
ds_xgb_params <- wf_set_tune_list %>%
extract_workflow("ds_xgb") %>%
parameters() %>%
update(mtry = mtry(c(1, 15)), under_ratio = under_ratio(c(1, 5)))
# update the workflowset
wf_set_tune_list_finalize <- wf_set_tune_list %>%
option_add(param_info = no_rf_params, id = "no_rf") %>%
option_add(param_info = no_xgb_params, id = "no_xgb") %>%
option_add(param_info = ds_rf_params, id = "ds_rf") %>%
option_add(param_info = ds_xgb_params, id = "ds_xgb")
其余的保持不变。我认为可能有一些有效的方法来设置参数。
关于r - 使用 tidymodels 调整工作流集时如何正确设置参数网格?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68589681/
这个问题在这里已经有了答案: Why filter() after flatMap() is "not completely" lazy in Java streams? (8 个答案) 关闭 6
我正在创建一个应用程序来从 Instagram 收集数据。我正在寻找像 Twitter 流 API 这样的流 API,这样我就可以自动实时收集数据而无需发送请求。 Instagram 有类似的 API
我正在使用 Apache Commons 在 Google App Engine 中上传一个 .docx 文件,如此链接中所述 File upload servlet .上传时,我还想使用 Apach
我尝试使用 DynamoDB 流和 AWS 提供的 Java DynamoDB 流 Kinesis 适配器捕获 DynamoDB 表更改。我正在 Scala 应用程序中使用 AWS Java 开发工具
我目前有一个采用 H.264 编码的 IP 摄像机流式视频 (RTSP)。 我想使用 FFmpeg 将此 H.264 编码流转换为另一个 RTSP 流,但 MPEG-2 编码。我该怎么做?我应该使用哪
Redis 流是否受益于集群模式?假设您有 10 个流,它们是分布在整个集群中还是都分布在同一节点上?我计划使用 Redis 流来实现真正的高吞吐量(200 万条消息/秒),所以我担心这种规模的 Re
这件事困扰了我一段时间。 所以我有一个 Product 类,它有一个 Image 列表(该列表可能为空)。 我想做 product.getImages().stream().filter(...) 但
是否可以使用 具有持久存储的 Redis 流 还是流仅限于内存数据? 我知道可以将 Redis 与核心数据结构的持久存储一起使用,但我已经能够理解是否也可以使用 Redis 中的流的持久存储。 最佳答
我开始学习 Elixir 并遇到了一个我无法轻松解决的挑战。 我正在尝试创建一个函数,该函数接受一个 Enumerable.t 并返回另一个 Enumerable.t ,其中包含下 n 个项目。它与
我试图从 readLine 调用创建一个无限的字符串流: import java.io.{BufferedReader, InputStreamReader} val in = new Buffere
你能帮我使用 Java 8 流 API 编写以下代码吗? SuperUser superUser = db.getSuperUser; for (final Client client : super
我正在尝试服用补品routeguide tutorial,并将客户端变成rocket服务器。我只是接受响应并将gRPC转换为字符串。 service RouteGuide { rpc GetF
流程代码可以是run here. 使用 flow,我有一个函数,它接受一个键值对对象并获取它的值 - 它获取的值应该是字符串、数字或 bool 值。 type ValueType = string
如果我有一个函数返回一个包含数据库信息的对象或一个空对象,如下所示: getThingFromDB: async function(id:string):Promise{ const from
我正在尝试使用javascript api和FB.ui将ogg音频文件发布到流中, 但是我不知道该怎么做。 这是我给FB.ui的电话: FB.ui( { method: '
我正在尝试删除工作区(或克隆它以使其看起来像父工作区,但我似乎两者都做不到)。但是,当我尝试时,我收到此消息:无法删除工作区 test_workspace,因为它有一个非空的默认组。 据我所知,这意味
可以使用 Stream|Map 来完成此操作,这样我就不需要将结果放入外部 HashMap 中,而是使用 .collect(Collectors.toMap(...)); 收集结果? Map rep
当我们从集合列表中获取 Stream 时,幕后到底发生了什么?我发现很多博客都说Stream不存储任何数据。如果这是真的,请考虑代码片段: List list = new ArrayList(); l
我对流及其工作方式不熟悉,我正在尝试获取列表中添加的特定对象的出现次数。 我找到了一种使用Collections来做到这一点的方法。其过程如下: for (int i = 0; i p.conten
我希望将一个 map 列表转换为另一个分组的 map 列表。 所以我有以下 map 列表 - List [{ "accId":"1", "accName":"TestAcc1", "accNumber
我是一名优秀的程序员,十分优秀!