- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在对具有可变维度的图像堆栈训练深度学习模型。 (Shape = [Batch, None, 256, 256, 1])
,其中 None 可以是可变的。
我使用 tf.RaggedTensor.merge_dimsions(0,1)
将参差不齐的张量转换为 [None, 256, 256, 1]
的形状以运行预训练的 keras CNN 模型。
但是,使用 KerasLayer API 会导致以下错误:TypeError: the object of type 'RaggedTensor' has no len()
当我在 KerasLayer 外部应用 .merge_dimsions
并将张量传递给相同的预训练模型时,我没有收到此错误。
import tensorflow as tf
# Synthetic Data Pipeline
def synthetic_gen():
varShape = tf.random.uniform((), minval=1, maxval=12, dtype=tf.int32)
image = tf.random.normal((varShape, 256, 256, 1))
image = tf.RaggedTensor.from_tensor(image, ragged_rank=1)
yield image
ds = tf.data.Dataset.from_generator(synthetic_gen, output_signature=(tf.RaggedTensorSpec(shape=(None, 256, 256, 1), dtype=tf.float32, ragged_rank=1)))
ds = ds.repeat().batch(8)
print(next(iter(ds)).shape)
# Build Model
inputs = tf.keras.Input(
type_spec=tf.RaggedTensorSpec(
shape=(8, None, 256, 256, 1),
dtype=tf.float32,
ragged_rank=1))
ResNet50 = tf.keras.applications.ResNet50(
include_top=True,
input_shape=(256, 256, 1),
weights=None)
def merge(x):
x = x.merge_dims(0, 1)
return x
x = tf.keras.layers.Lambda(merge)(inputs)
merged_inputs = x
# x = ResNet50(x) # Uncommenting this will result in `model` producing an error when run for inference.
model = tf.keras.Model(inputs, x)
# Run inference
data = next(iter(ds))
model(data).shape # Will be an error if ResNet50 is used
这是一个演示问题的 colab notebook。 https://colab.research.google.com/drive/1kN78mf4_oNqxWOluV054NlqmakC5msli?usp=sharing
最佳答案
不确定以下答案或解决方法对于复杂的网络设计是否稳定。但这里有一些提示。你得到的原因
Ragged Tensors have no len()
是因为 ResNet 模型,因为它需要 tensor
而不是 ragged_tensor
。不过,我不确定 ResNet(weights=None) 是否能够直接采用 ragged_tensor
。因此,如果我们可以在 ResNet 被馈送之前转换参差不齐的数据,也许它就不会提示了。下面是完整的工作代码。但请注意,可能存在一些有效的方法。
数据
import tensorflow as tf
# Synthetic Data Pipeline
def synthetic_gen():
varShape = tf.random.uniform((), minval=1, maxval=12, dtype=tf.int32)
image = tf.random.normal((varShape, 256, 256, 1))
image = tf.RaggedTensor.from_tensor(image, ragged_rank=1)
yield image
ds = tf.data.Dataset.from_generator(synthetic_gen,
output_signature=(tf.RaggedTensorSpec(
shape=(None, 256, 256, 1),
dtype=tf.float32, ragged_rank=1
)
)
)
ds = ds.repeat().batch(8)
# Build Model
inputs = tf.keras.Input(
type_spec=tf.RaggedTensorSpec(
shape=(8, None, 256, 256, 1),
dtype=tf.float32,
ragged_rank=1))
ResNet50 = tf.keras.applications.ResNet50(
include_top=True,
input_shape=(256, 256, 1),
weights=None)
def merge(x):
x = x.merge_dims(0, 1)
return x
在这里,我们将 ragged_tensor
转换为 tensor
,然后再将数据传递给 ResNet。
class RagModel(tf.keras.Model):
def __init__(self):
super(RagModel, self).__init__()
# base models
self.a = tf.keras.layers.Lambda(merge)
# convert: tensor = ragged_tensor.to_tensor()
self.b = tf.keras.layers.Lambda(lambda x: x.to_tensor())
self.c = ResNet50
def call(self, inputs, training=None, plot=False, **kwargs):
x = self.a(inputs)
x = self.b(x) if not plot else x
x = self.c(x)
return x
# a helper function to plot
def build_graph(self):
x = tf.keras.Input(type_spec=tf.RaggedTensorSpec(
shape=(8, None, 256, 256, 1),
dtype=tf.float32, ragged_rank=1)
)
return tf.keras.Model(inputs=[x],
outputs=self.call(x, plot=True))
x_model = RagModel()
data = next(iter(ds)); print(data.shape)
x_model(data).shape
(8, None, 256, 256, 1)
TensorShape([39, 1000])
tf.keras.utils.plot_model(x_model.build_graph(),
show_shapes=True, show_layer_names=True)
x_model.build_graph().summary()
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_4 (InputLayer) [(8, None, 256, 256, 1)] 0
_________________________________________________________________
lambda_2 (Lambda) (None, 256, 256, 1) 0
_________________________________________________________________
resnet50 (Functional) (None, 1000) 25630440
=================================================================
Total params: 25,630,440
Trainable params: 25,577,320
Non-trainable params: 53,120
_________________________________________________________________
关于tensorflow - 转换为张量后,参差不齐的张量没有 len(),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68638911/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!