gpt4 book ai didi

python - Matplotlib 饼图标签与值不匹配

转载 作者:行者123 更新时间:2023-12-04 17:14:00 27 4
gpt4 key购买 nike

我正在做这个 https://www.kaggle.com/edqian/twitter-climate-change-sentiment-dataset .
我已经将情感从数字转换为其字符描述(即 0 将是中性,1 将是 Pro,-1 将是反)

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

tweets_df = pd.read_csv('twitter_sentiment_data.csv')

tweets_df.loc[tweets_df['sentiment'] == 0, 'twt_sentiment'] = 'Neutral'
tweets_df.loc[tweets_df['sentiment'] == -1, 'twt_sentiment'] = 'Anti'
tweets_df.loc[tweets_df['sentiment'] == 1, 'twt_sentiment'] = 'Pro'

tweets_df = tweets_df.drop(['sentiment'], axis=1)

# display(tweets_df.head())
message tweetid twt_sentiment
0 @tiniebeany climate change is an interesting hustle as it was global warming but the planet stopped warming for 15 yes while the suv boom 792927353886371840 Anti
1 RT @NatGeoChannel: Watch #BeforeTheFlood right here, as @LeoDiCaprio travels the world to tackle climate change https://toco/LkDehj3tNn htt… 793124211518832641 Pro
2 Fabulous! Leonardo #DiCaprio's film on #climate change is brilliant!!! Do watch. https://toco/7rV6BrmxjW via @youtube 793124402388832256 Pro
3 RT @Mick_Fanning: Just watched this amazing documentary by leonardodicaprio on climate change. We all think this… https://toco/kNSTE8K8im 793124635873275904 Pro
4 RT @cnalive: Pranita Biswasi, a Lutheran from Odisha, gives testimony on effects of climate change & natural disasters on the po… 793125156185137153 NaN
我想创建一个带有子图的图表,以显示值(value)和百分比的情绪。我试过的代码:
sns.set(font_scale=1.5)
style.use("seaborn-poster")

fig, axes = plt.subplots(1, 2, figsize=(20, 10), dpi=100)

sns.countplot(tweets_df["twt_sentiment"], ax=axes[0])
labels = list(tweets_df["twt_sentiment"].unique())

axes[1].pie(tweets_df["twt_sentiment"].value_counts(),
autopct="%1.0f%%",
labels=labels,
startangle=90,
explode=tuple([0.1] * len(labels)))

fig.suptitle("Distribution of Tweets", fontsize=20)
plt.show()
结果不是我想要的,因为饼图标签是错误的。
pie chart with wrong labelling
在 value_counts 中使用 sort=False 后,饼图如下所示:
after sort=False

最佳答案

  • labels = list(tweets_df["twt_sentiment"].unique())标签的排列顺序与 tweets_df.twt_sentiment.value_counts() 的索引不同.索引决定切片顺序。因此,最好使用 .value_counts()索引作为标签。
  • 标签可以很容易地添加到条形图中,那么饼图是不必要的。

  • import pandas as pd
    import matplotlib.pyplot as plt

    tweets_df = pd.read_csv('data/kaggle/twitter_climate_change_sentiment/twitter_sentiment_data.csv')

    tweets_df.loc[tweets_df['sentiment'] == -1, 'twt_sentiment'] = 'Anti'
    tweets_df.loc[tweets_df['sentiment'] == 1, 'twt_sentiment'] = 'Pro'
    tweets_df.loc[tweets_df['sentiment'] == 0, 'twt_sentiment'] = 'Neutral'

    # assign value_counts to a variable; this is a pandas.Series
    vc = tweets_df.twt_sentiment.value_counts()

    # assign the value_counts index as the labels
    labels = vc.index

    # custom colors
    colors = ['tab:blue', 'tab:orange', 'tab:green']

    fig, axes = plt.subplots(1, 2, figsize=(10, 5), dpi=100)

    # plot the pandas.Series directly with pandas.Series.plot
    p1 = vc.plot(kind='bar', ax=axes[0], color=colors, rot=0, xlabel='Tweet Sentiment', width=.75)

    # add count label
    axes[0].bar_label(p1.containers[0], label_type='center')

    # add percent labels
    blabels = [f'{(v / vc.sum())*100:0.0f}%' for v in vc]
    axes[0].bar_label(p1.containers[0], labels=blabels, label_type='edge')

    # make space at the top of the bar plot
    axes[0].margins(y=0.1)

    # add the pie plot
    axes[1].pie(vc, labels=labels, autopct="%1.0f%%", startangle=90, explode=tuple([0.1] * len(labels)), colors=colors)

    fig.suptitle("Distribution of Tweets", fontsize=20)
    plt.show()
    enter image description here

    关于python - Matplotlib 饼图标签与值不匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69024302/

    27 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com