- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
大家和约翰教授
我们正在使用 gekko 在 tclab 仿真模型上进行 MPC。我们尝试模拟现场执行器由于执行器问题而偏离 Gekko 计算的 MV 的情况。
如果偏差在固定模式中,例如一个相当大的恒定偏差发生了很长时间,并且可能会回来然后长时间工作良好。我们可以通过额外的逻辑来处理它来检测偏差并将偏差值添加到 Gekko 计算的 mv 中。
有一天,我注意到当 fstatus = 1 时,可能会有 MV 的测量值。所以我试了一下。我希望 Gekko 可以自己处理偏差。例如,如果来自 gekko 的 mv 为 10 并且测量值为 5 并且模式继续,则 gekko 可能会吐出比 10 更高的 MV 值,例如 15 并且测量值为 10。
在模拟中,当我设置 MV 的 fstatus=1 时,MV 的曲线变为:
q1a 是带有手动偏差的 q1。在上图中,q1a == q1。似乎壁虎在考虑 MV 的效果时又迈进了一步。
在下图中,有两个时间范围,一个是“q1a == q1+20”,另一个是“q1a == q1 -20”。 q1a 的值被馈送到 tclab 和 mv(q1) 的测量值。
我不明白为什么 gekko 计算的 q1 在 meas 偏离时会上升或下降,尽管 t1 离 sp 很远。
编辑:示例代码
请参阅下面“普通”HMI 的屏幕截图。缓慢的MV消失了,所以可能是我代码中的错误引起的。但是上升或下降仍然可以看到。
请参阅下面的我的代码:
from random import random
from random import randrange
import tclab
from tclab import labtime
from tclab import TCLabModel
import numpy as np
import time
import matplotlib.pyplot as plt
from gekko import GEKKO
import json
from tclab import TCLabModel
make_mp4 = True
if make_mp4:
import imageio # required to make animation
import os
try:
os.mkdir('./figures')
except:
pass
class tclab_heaterpipe():
def __init__(self,d1,d2,model):
if(d1 >= 1 and d2 >=1):
self.delay_q1_step = int(d1)
self.delay_q2_step = int(d2)
self.q1_buffer = [0] * self.delay_q1_step
self.q2_buffer = [0] * self.delay_q2_step
self.m = model
else:
self.delay_q1_step =0
self.delay_q2_step =0
return
def Q1_delay(self,q1):
if(self.delay_q1_step == 0):
self.m.Q1(q1)
self.q1_buffer.insert(0,q1)
self.m.Q1(self.q1_buffer.pop())
def Q2_delay(self,q2):
if(self.delay_q2_step == 0):
self.m.Q1(q2)
self.q2_buffer.insert(0,q2)
self.m.Q2(self.q2_buffer.pop())
# Connect to Arduino
connected = False
theta1 = 1
theta2 = 1
T = tclab.setup(connected)
a = T()
tclab_delay = tclab_heaterpipe(theta1,theta2,a)
# Turn LED on
print('LED On')
a.LED(100)
# Simulate a time delay
# Run time in minutes
run_time = 80.0
# Number of cycles
loops = int(60.0*run_time)
# Temperature (K)
t1sp = 45.0
t2sp = 35.0
#########################################################
# Initialize Model
#########################################################
# use remote=True for MacOS
m = GEKKO(name='tclab-mpc',remote=False)
m.time = np.linspace(0,400,41)
step = 10
T1 = np.ones(int(loops/step)+1) * a.T1 # temperature (degC)
T2 = np.ones(int(loops/step)+1) * a.T2 # temperature (degC)
Tsp1 = np.ones(int(loops/step)+1) * t1sp # set point (degC)
Tsp2 = np.ones(int(loops/step)+1) * t2sp # set point (degC)
# heater values
Q1s = np.ones(int(loops/step)+1) * 0.0
Q2s = np.ones(int(loops/step)+1) * 0.0
# Parameters
Q1_ss = m.Param(value=0)
TC1_ss = m.Param(value=a.T1)
Q2_ss = m.Param(value=0)
TC2_ss = m.Param(value=a.T2)
Kp1 = m.Param(value= 0.7)
tau1 = m.Param(value=160.0)
Kp2 = m.Param(value=0.05)
tau2 = m.Param(value=160.0)
Kp3= m.Param(value=0.05)
tau3 = m.Param(value=160.0)
Kp4 = m.Param(value=0.4)
tau4 = m.Param(value=200.0)
sp1 = m.Param(value=a.T1)
sp2 = m.Param(value=a.T2)
# Manipulated variable
Q1 = m.MV(value=0, name='q1')
Q1.STATUS = 1 # use to control temperature
Q1.FSTATUS = 1 # no feedback measurement
Q1.LOWER = 0.0
Q1.UPPER = 100.0
Q1.DMAX = 10.0
Q1.DCOST = 5.0
Q2 = m.MV(value=0, name='q2')
Q2.STATUS = 1 # use to control temperature
Q2.FSTATUS = 1 # no feedback measurement
Q2.LOWER = 0.0
Q2.UPPER = 100.0
Q2.DMAX = 10.0
Q2.DCOST = 5.0
# Controlled variable
TC1 = m.CV(value=a.T1, name='tc1')
TC1.STATUS = 1 # minimize error with setpoint range
TC1.FSTATUS = 1 # receive measurement
TC1.TR_INIT = 2 # reference trajectory
# TC1.COST = 0.1
TC1.WSPHI = 20
TC1.WSPLO = 20
TC1.TAU = 50 # time constant for response
#TC1.TR_OPEN = 3
TC2 = m.CV(value=a.T2, name='tc2')
TC2.STATUS = 1 # minimize error with setpoint range
TC2.FSTATUS = 1 # receive measurement
TC2.TR_INIT = 2 # reference trajectory
# TC2.COST = 0.1
TC2.WSPHI = 20
TC2.WSPLO = 20
TC2.TAU = 30 # time constant for response
#kTC2.TR_OPEN = 3
# 添加延时
Q1d=m.Var()
m.delay(Q1, Q1d, theta1)
Q2d=m.Var()
m.delay(Q2, Q2d, theta2)
# Equation
#m.Equation(tau1 * TC1.dt() + (TC1 - TC1_ss) == Kp1 * (Q1d - Q1_ss))
# m.Equation(tau2 * TC2.dt() + (TC2 - TC2_ss) == Kp2 * (Q1d - Q1_ss))
# m.Equation(tau3 * TC1.dt() + (TC1 - TC1_ss) == Kp3 * (Q2d - Q2_ss))
# m.Equation(tau2 * TC2.dt() + (TC2 - TC2_ss) == Kp4 * (Q2d - Q2_ss))
m.Equation(0.5 * (tau1 * TC1.dt() + (TC1 - TC1_ss) + tau3 * TC1.dt() + (TC1 - TC1_ss)) == Kp1 * (Q1d - Q1_ss) + Kp3 * (Q2d -Q2_ss))
m.Equation(0.5 * (tau2 * TC2.dt() + (TC2 - TC2_ss) + tau4 * TC2.dt() + (TC2 - TC2_ss)) == Kp4 * (Q2d - Q2_ss) + Kp2 * (Q1d - Q1_ss))
# Steady-state initializations
m.options.IMODE = 1
m.options.SOLVER = 1 # 1=APOPT, 3=IPOPT
m.solve()
sp1.VALUE = 45
sp2.VALUE = 35
# Global Options
m.options.IMODE = 6 # MPC
m.options.CV_TYPE = 3 # Objective type
m.options.NODES = 2 # Collocation nodes
m.options.MAX_TIME = 10
m.options.SOLVER = 1 # 1=APOPT, 3=IPOPT
#m.options.CV_WGT_START = 2*theta
#m.options.CV_WGT_SLOPE = theta
# m.options.MV_STEP_HOR = 5
##################################################################
# Create plot
plt.figure()
plt.ion()
plt.show()
# Main Loop
a.Q1(0)
a.Q2(0)
Q2s[0:] = 0
start_time = time.time()
tm = np.linspace(1,loops,int(loops/step)+1)
j=0
try:
time_start = time.time()
labtime_start = labtime.time()
if(not connected):
labtime.set_rate(10)
for i in tclab.clock(loops,adaptive=False):
i = int(i)
if(i == 0):
continue
print("-----------------------")
t_real = time.time() - time_start
t_lab = labtime.time() - labtime_start
print("real time = {0:4.1f} lab time = {1:4.1f} m.time = {1:4.1f}".format(t_real, t_lab,m.time))
#print("real time = {0:4.1f} m.time = {1:4.1f}".format(t_real, m.time))
if(i%step != 0):
continue
j = i/step
j = int(j)
print(j)
T1[j:] = a.T1
T2[j:] = a.T2
tm[j] = i
###############################
### MPC CONTROLLER ###
###############################
TC1.MEAS = T1[j]
TC2.MEAS = T2[j]
print("T1 meas:{0:4.1f} ".format(a.T1))
print("T2 meas:{0:4.1f} ".format(a.T2))
# input setpoint with deadband +/- DT
DT =0.5
TC1.SPHI = Tsp1[j] +DT
TC1.SPLO = Tsp1[j] -DT
TC2.SPHI = Tsp2[j] +DT
TC2.SPLO = Tsp2[j] -DT
try:
# stop model time to solve MPC in cast the solver takes too much time
if(not connected):
labtime.stop()
m.solve(disp=False)
#start model time
if(not connected):
labtime.start()
except Exception as e:
if(not connected):
if(not labtime.running):
labtime.start()
print("sovle's exception:")
print(e)
if(j != 0):
Q1s[j] = Q1s[j-1]
Q2s[j] = Q2s[j-1]
continue
# test for successful solution
if (m.options.APPSTATUS==1):
# retrieve the first Q value
Q1s[j:] = np.ones(len(Q1s)-j) * Q1.NEWVAL
Q2s[j:] = np.ones(len(Q2s)-j) * Q2.NEWVAL
#a.Q1(Q1.NEWVAL)
#a.Q2(Q2.NEWVAL)
print("Q1 applied with delay: {0:4.1f} ".format(Q1.NEWVAL))
print("Q2 applied with delay: {0:4.1f} ".format(Q2.NEWVAL))
with open(m.path+'//results.json') as f:
results = json.load(f)
else:
# not successful, set heater to zero
print("APPSTATUS is not 1,set Q to 0")
#Q1s[j] = 0
#Q2s[j] = 0
if i> 300 and i < 600:
Q1s[j] = Q1s[j] - 20
Q2s[j] = Q2s[j] - 20
if i>= 600:
Q1s[j] = Q1s[j] + 20
Q2s[j] = Q2s[j] + 20
Q1.meas= Q1s[j]
Q2.meas= Q2s[j]
tclab_delay.Q1_delay(Q1s[j])
tclab_delay.Q2_delay(Q2s[j])
print("calc:"+str(Q1s[j]))
print("calc:"+str(Q2s[j]))
#apply disturbance on 50s, 200s,
#if(i == 600):
# Q2s[j] = 100
#if(i == 1400):
# Q2s[j] = 0
#Q2s[j] = 20 - randrange(20)
#Q2s[j:] = np.ones(len(Q2s)-j) * Q2s[j]
#restore Q2 to 0
#if(i == 300):
#Q2s[j:] = 0
#a.Q2(Q2s[j])
#tclab_delay.Q2_delay(Q2s[j])
#take Q2 to FV
#Q2.MEAS = Q2s[j]
if(not connected):
labtime.stop()
# Plot
try:
plt.clf()
ax=plt.subplot(2,1,1)
ax.grid()
plt.plot(tm[0:j],T1[0:j],'ro',markersize=3,label=r'$T_1$')
plt.plot(tm[0:j],Tsp1[0:j],'r-',markersize=3,label=r'$T_1 Setpoint$')
plt.plot(tm[0:j],T2[0:j],'bo',markersize=3,label=r'$T_2$')
plt.plot(tm[0:j],Tsp2[0:j],'b-',markersize=3,label=r'$T_2 Setpoint$')
plt.plot(tm[j]+m.time,results['tc1.bcv'],'r-.',markersize=1,\
label=r'$T_1$ predicted',linewidth=1)
plt.plot(tm[j]+m.time,results['tc2.bcv'],'b-.',markersize=1,\
label=r'$T_2$ predicted',linewidth=1)
plt.plot(tm[j]+m.time,results['tc1.tr_hi'],'k--',\
label=r'$T_1$ trajectory')
plt.plot(tm[j]+m.time,results['tc1.tr_lo'],'k--')
plt.plot(tm[j]+m.time,results['tc2.tr_hi'],'k--',\
label=r'$T_2$ trajectory')
plt.plot(tm[j]+m.time,results['tc2.tr_lo'],'k--')
plt.ylabel('Temperature (degC)')
plt.legend(loc='best')
ax=plt.subplot(2,1,2)
ax.grid()
plt.plot(tm[0:j],Q1s[0:j],'r-',linewidth=3,label=r'$Q_1$')
plt.plot(tm[0:j],Q2s[0:j],'b-',linewidth=3,label=r'$Q_2$')
plt.plot(tm[j]+m.time,Q1.value,'r-.',\
label=r'$Q_1$ plan',linewidth=1)
plt.plot(tm[j]+m.time,Q2.value,'b-.',\
label=r'$Q_2$ plan',linewidth=1)
#plt.plot(tm[0:i],Q2s[0:i],'b:',LineWidth=3,label=r'$Q_2$')
plt.ylabel('Heaters')
plt.xlabel('Time (sec)')
plt.legend(loc='best')
plt.draw()
plt.pause(0.05)
if make_mp4:
filename='./figures/plot_'+str(j+10000)+'.png'
plt.savefig(filename)
except Exception as e:
print(e)
pass
if(not connected):
labtime.start()
# Turn off heaters
a.Q1(0)
a.Q2(0)
print('Shutting down')
input("Press Enter to continue...")
a.close()
# Allow user to end loop with Ctrl-C
except KeyboardInterrupt:
# Disconnect from Arduino
a.Q1(0)
a.Q2(0)
print('Shutting down')
a.close()
if make_mp4:
images = []
iset = 0
for i in range(1,int(loops/step)+1):
filename='./figures/plot_'+str(i+10000)+'.png'
if os.path.exists(filename):
images.append(imageio.imread(filename))
if ((i+1)%350)==0:
imageio.mimsave('results_'+str(iset)+'.mp4', images)
iset += 1
images = []
if images!=[]:
imageio.mimsave('results_'+str(iset)+'.mp4', images)
# Make sure serial connection still closes when there's an error
except:
# Disconnect from Arduino
a.Q1(0)
a.Q2(0)
print('Error: Shutting down')
a.close()
raise
问候
最佳答案
是FSTATUS
也对 CV 启用,例如 t1.FSTATUS=1
?如果您更新测量,例如:
t1.MEAS = lab.T1
t2.MEAS = lab.T2
然后这会更新
BIAS
为
t1
和
t2
(
BIAS documentation )。这应该通过任意增加或减少加热器 20% 来解决您引入的任何过程/模型不匹配。如
t1.FSTATUS
为 OFF (0),则无法补偿失配。
TAU
, Controller 可能会显得迟钝太高了。这是一个带有
MPC and a linear model 的示例应用程序.
Q1.DMAX=10
和
Q2.DMAX=10
.当
Q1
和
Q2
值每个周期上移 20, Controller 最多可以下移
20-10=10
所以 Controller 似乎朝着错误的方向倾斜。更改为
DMAX=100
解决问题。由于推荐的
Q1
,仍然存在与设定点的偏移。和
Q2
每个周期都移位。真正的推荐值永远不会实现。要尝试的另一件事是对测量值施加偏移,例如
TC1.MEAS = T1[j] + 20
.在这种情况下,模型偏差将消除偏移。
from random import random
from random import randrange
import tclab
from tclab import labtime
from tclab import TCLabModel
import numpy as np
import time
import matplotlib.pyplot as plt
from gekko import GEKKO
import json
from tclab import TCLabModel
make_gif = True
make_mp4 = True
if make_gif or make_mp4:
# pip install imageio-ffmpeg with imageio to make MP4
import imageio # required to make animation
import os
try:
os.mkdir('./figures')
except:
pass
class tclab_heaterpipe():
def __init__(self,d1,d2,model):
if(d1 >= 1 and d2 >=1):
self.delay_q1_step = int(d1)
self.delay_q2_step = int(d2)
self.q1_buffer = [0] * self.delay_q1_step
self.q2_buffer = [0] * self.delay_q2_step
self.m = model
else:
self.delay_q1_step =0
self.delay_q2_step =0
return
def Q1_delay(self,q1):
if(self.delay_q1_step == 0):
self.m.Q1(q1)
self.q1_buffer.insert(0,q1)
self.m.Q1(self.q1_buffer.pop())
def Q2_delay(self,q2):
if(self.delay_q2_step == 0):
self.m.Q1(q2)
self.q2_buffer.insert(0,q2)
self.m.Q2(self.q2_buffer.pop())
# Connect to Arduino
connected = False # switch to connected=True with physical hardware
theta1 = 1
theta2 = 1
T = tclab.setup(connected)
a = T()
tclab_delay = tclab_heaterpipe(theta1,theta2,a)
# Turn LED on
print('LED On')
a.LED(100)
# Simulate a time delay
# Run time in minutes
run_time = 20.0
# Number of cycles
loops = int(60.0*run_time)
# Temperature (K)
t1sp = 45.0
t2sp = 35.0
#########################################################
# Initialize Model
#########################################################
# use remote=True for MacOS
m = GEKKO(name='tclab-mpc',remote=False)
m.time = np.linspace(0,400,41)
step = 10
T1 = np.ones(int(loops/step)+1) * a.T1 # temperature (degC)
T2 = np.ones(int(loops/step)+1) * a.T2 # temperature (degC)
Tsp1 = np.ones(int(loops/step)+1) * t1sp # set point (degC)
Tsp2 = np.ones(int(loops/step)+1) * t2sp # set point (degC)
# heater values
Q1s = np.ones(int(loops/step)+1) * 0.0
Q2s = np.ones(int(loops/step)+1) * 0.0
# Parameters
Q1_ss = m.Param(value=0)
TC1_ss = m.Param(value=a.T1)
Q2_ss = m.Param(value=0)
TC2_ss = m.Param(value=a.T2)
Kp1 = m.Param(value= 0.7)
tau1 = m.Param(value=160.0)
Kp2 = m.Param(value=0.05)
tau2 = m.Param(value=160.0)
Kp3= m.Param(value=0.05)
tau3 = m.Param(value=160.0)
Kp4 = m.Param(value=0.4)
tau4 = m.Param(value=200.0)
sp1 = m.Param(value=a.T1)
sp2 = m.Param(value=a.T2)
# Manipulated variable
Q1 = m.MV(value=0, name='q1')
Q1.STATUS = 1 # use to control temperature
Q1.FSTATUS = 1 # no feedback measurement
Q1.LOWER = 0.0
Q1.UPPER = 100.0
Q1.DMAX = 100.0
Q1.DCOST = 1e-3
Q2 = m.MV(value=0, name='q2')
Q2.STATUS = 1 # use to control temperature
Q2.FSTATUS = 1 # no feedback measurement
Q2.LOWER = 0.0
Q2.UPPER = 100.0
Q2.DMAX = 100.0
Q2.DCOST = 1e-3
# Controlled variable
TC1 = m.CV(value=a.T1, name='tc1')
TC1.STATUS = 1 # minimize error with setpoint range
TC1.FSTATUS = 1 # receive measurement
TC1.TR_INIT = 2 # reference trajectory
# TC1.COST = 0.1
TC1.WSPHI = 20
TC1.WSPLO = 20
TC1.TAU = 50 # time constant for response
#TC1.TR_OPEN = 3
TC2 = m.CV(value=a.T2, name='tc2')
TC2.STATUS = 1 # minimize error with setpoint range
TC2.FSTATUS = 1 # receive measurement
TC2.TR_INIT = 2 # reference trajectory
# TC2.COST = 0.1
TC2.WSPHI = 20
TC2.WSPLO = 20
TC2.TAU = 30 # time constant for response
#kTC2.TR_OPEN = 3
# 添加延时
Q1d=m.Var()
m.delay(Q1, Q1d, theta1)
Q2d=m.Var()
m.delay(Q2, Q2d, theta2)
# Equation
#m.Equation(tau1 * TC1.dt() + (TC1 - TC1_ss) == Kp1 * (Q1d - Q1_ss))
# m.Equation(tau2 * TC2.dt() + (TC2 - TC2_ss) == Kp2 * (Q1d - Q1_ss))
# m.Equation(tau3 * TC1.dt() + (TC1 - TC1_ss) == Kp3 * (Q2d - Q2_ss))
# m.Equation(tau2 * TC2.dt() + (TC2 - TC2_ss) == Kp4 * (Q2d - Q2_ss))
m.Equation(0.5 * (tau1 * TC1.dt() + (TC1 - TC1_ss) + tau3 * TC1.dt() + (TC1 - TC1_ss)) == Kp1 * (Q1d - Q1_ss) + Kp3 * (Q2d -Q2_ss))
m.Equation(0.5 * (tau2 * TC2.dt() + (TC2 - TC2_ss) + tau4 * TC2.dt() + (TC2 - TC2_ss)) == Kp4 * (Q2d - Q2_ss) + Kp2 * (Q1d - Q1_ss))
# Steady-state initializations
m.options.IMODE = 1
m.options.SOLVER = 1 # 1=APOPT, 3=IPOPT
m.solve()
sp1.VALUE = 45
sp2.VALUE = 35
# Global Options
m.options.IMODE = 6 # MPC
m.options.CV_TYPE = 3 # Objective type
m.options.NODES = 2 # Collocation nodes
m.options.MAX_TIME = 10
m.options.SOLVER = 1 # 1=APOPT, 3=IPOPT
#m.options.CV_WGT_START = 2*theta
#m.options.CV_WGT_SLOPE = theta
# m.options.MV_STEP_HOR = 5
##################################################################
# Create plot
plt.figure(figsize=(12,8))
plt.ion()
plt.show()
# Main Loop
a.Q1(0)
a.Q2(0)
Q2s[0:] = 0
start_time = time.time()
tm = np.linspace(1,loops,int(loops/step)+1)
j=0
try:
time_start = time.time()
labtime_start = labtime.time()
if(not connected):
labtime.set_rate(10)
for i in tclab.clock(loops,adaptive=False):
i = int(i)
if(i == 0):
continue
print("-----------------------")
t_real = time.time() - time_start
t_lab = labtime.time() - labtime_start
print("real time = {0:4.1f} lab time = {1:4.1f} m.time = {1:4.1f}".format(t_real, t_lab,m.time))
#print("real time = {0:4.1f} m.time = {1:4.1f}".format(t_real, m.time))
if(i%step != 0):
continue
j = i/step
j = int(j)
print(j)
T1[j:] = a.T1
T2[j:] = a.T2
tm[j] = i
###############################
### MPC CONTROLLER ###
###############################
TC1.MEAS = T1[j]
TC2.MEAS = T2[j]
print("T1 meas:{0:4.1f} ".format(a.T1))
print("T2 meas:{0:4.1f} ".format(a.T2))
# input setpoint with deadband +/- DT
DT =0.5
TC1.SPHI = Tsp1[j] +DT
TC1.SPLO = Tsp1[j] -DT
TC2.SPHI = Tsp2[j] +DT
TC2.SPLO = Tsp2[j] -DT
try:
# stop model time to solve MPC in cast the solver takes too much time
if(not connected):
labtime.stop()
m.solve(disp=False)
#start model time
if(not connected):
labtime.start()
except Exception as e:
if(not connected):
if(not labtime.running):
labtime.start()
print("sovle's exception:")
print(e)
if(j != 0):
Q1s[j] = Q1s[j-1]
Q2s[j] = Q2s[j-1]
continue
# test for successful solution
if (m.options.APPSTATUS==1):
# retrieve the first Q value
Q1s[j:] = np.ones(len(Q1s)-j) * Q1.NEWVAL
Q2s[j:] = np.ones(len(Q2s)-j) * Q2.NEWVAL
#a.Q1(Q1.NEWVAL)
#a.Q2(Q2.NEWVAL)
print("Q1 applied with delay: {0:4.1f} ".format(Q1.NEWVAL))
print("Q2 applied with delay: {0:4.1f} ".format(Q2.NEWVAL))
with open(m.path+'//results.json') as f:
results = json.load(f)
else:
# not successful, set heater to zero
print("APPSTATUS is not 1,set Q to 0")
#Q1s[j] = 0
#Q2s[j] = 0
if i> 300 and i < 600:
Q1s[j] = max(0,Q1s[j] - 20)
Q2s[j] = max(0,Q2s[j] - 20)
if i>= 600:
Q1s[j] = min(100,Q1s[j] + 20)
Q2s[j] = min(100,Q2s[j] + 20)
Q1.meas= Q1s[j]
Q2.meas= Q2s[j]
tclab_delay.Q1_delay(Q1s[j])
tclab_delay.Q2_delay(Q2s[j])
print("calc:"+str(Q1s[j]))
print("calc:"+str(Q2s[j]))
if(not connected):
labtime.stop()
# Plot
try:
plt.clf()
ax=plt.subplot(2,1,1)
ax.grid()
plt.plot(tm[0:j],T1[0:j],'ro',markersize=3,label=r'$T_1$')
plt.plot(tm[0:j],Tsp1[0:j],'r-',markersize=3,label=r'$T_1 Setpoint$')
plt.plot(tm[0:j],T2[0:j],'bo',markersize=3,label=r'$T_2$')
plt.plot(tm[0:j],Tsp2[0:j],'b-',markersize=3,label=r'$T_2 Setpoint$')
plt.plot(tm[j]+m.time,results['tc1.bcv'],'r-.',markersize=1,\
label=r'$T_1$ predicted',linewidth=1)
plt.plot(tm[j]+m.time,results['tc2.bcv'],'b-.',markersize=1,\
label=r'$T_2$ predicted',linewidth=1)
plt.plot(tm[j]+m.time,results['tc1.tr_hi'],'k--',\
label=r'$T_1$ trajectory')
plt.plot(tm[j]+m.time,results['tc1.tr_lo'],'k--')
plt.plot(tm[j]+m.time,results['tc2.tr_hi'],'k--',\
label=r'$T_2$ trajectory')
plt.plot(tm[j]+m.time,results['tc2.tr_lo'],'k--')
plt.ylabel('Temperature (degC)')
plt.legend(loc=1)
ax=plt.subplot(2,1,2)
ax.grid()
plt.plot(tm[0:j],Q1s[0:j],'r-',linewidth=3,label=r'$Q_1$')
plt.plot(tm[0:j],Q2s[0:j],'b-',linewidth=3,label=r'$Q_2$')
plt.plot(tm[j]+m.time,Q1.value,'r-.',\
label=r'$Q_1$ plan',linewidth=1)
plt.plot(tm[j]+m.time,Q2.value,'b-.',\
label=r'$Q_2$ plan',linewidth=1)
#plt.plot(tm[0:i],Q2s[0:i],'b:',LineWidth=3,label=r'$Q_2$')
plt.ylabel('Heaters')
plt.xlabel('Time (sec)')
plt.legend(loc=1)
plt.draw()
plt.pause(0.05)
if make_mp4:
filename='./figures/plot_'+str(j+10000)+'.png'
plt.savefig(filename)
except Exception as e:
print(e)
pass
if(not connected):
labtime.start()
# Turn off heaters
a.Q1(0)
a.Q2(0)
print('Shutting down')
input("Press Enter to continue...")
a.close()
# make gif
if make_gif:
images = []
iset = 0
for i in range(1,int(loops/step)+1):
filename='./figures/plot_'+str(i+10000)+'.png'
if os.path.exists(filename):
images.append(imageio.imread(filename))
if ((i+1)%350)==0:
imageio.mimsave('results_'+str(iset)+'.gif', images)
iset += 1
images = []
if images!=[]:
imageio.mimsave('results_'+str(iset)+'.gif', images)
if make_mp4:
images = []
iset = 0
for i in range(1,int(loops/step)+1):
filename='./figures/plot_'+str(i+10000)+'.png'
if os.path.exists(filename):
images.append(imageio.imread(filename))
if ((i+1)%350)==0:
imageio.mimsave('results_'+str(iset)+'.gif', images)
iset += 1
images = []
if images!=[]:
imageio.mimsave('results_'+str(iset)+'.gif', images)
# Allow user to end loop with Ctrl-C
except KeyboardInterrupt:
# Disconnect from Arduino
a.Q1(0)
a.Q2(0)
print('Shutting down')
a.close()
if make_gif:
images = []
iset = 0
for i in range(1,int(loops/step)+1):
filename='./figures/plot_'+str(i+10000)+'.png'
if os.path.exists(filename):
images.append(imageio.imread(filename))
if ((i+1)%350)==0:
imageio.mimsave('results_'+str(iset)+'.gif', images)
iset += 1
images = []
if images!=[]:
imageio.mimsave('results_'+str(iset)+'.gif', images)
if make_mp4:
images = []
iset = 0
for i in range(1,int(loops/step)+1):
filename='./figures/plot_'+str(i+10000)+'.png'
if os.path.exists(filename):
images.append(imageio.imread(filename))
if ((i+1)%350)==0:
imageio.mimsave('results_'+str(iset)+'.mp4', images)
iset += 1
images = []
if images!=[]:
imageio.mimsave('results_'+str(iset)+'.mp4', images)
# Make sure serial connection still closes when there's an error
except:
# Disconnect from Arduino
a.Q1(0)
a.Q2(0)
print('Error: Shutting down')
a.close()
raise
关于gekko - fstatus=1 时 MV 的 MEAS,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69026508/
SQLite、Content provider 和 Shared Preference 之间的所有已知区别。 但我想知道什么时候需要根据情况使用 SQLite 或 Content Provider 或
警告:我正在使用一个我无法完全控制的后端,所以我正在努力解决 Backbone 中的一些注意事项,这些注意事项可能在其他地方更好地解决......不幸的是,我别无选择,只能在这里处理它们! 所以,我的
我一整天都在挣扎。我的预输入搜索表达式与远程 json 数据完美配合。但是当我尝试使用相同的 json 数据作为预取数据时,建议为空。点击第一个标志后,我收到预定义消息“无法找到任何内容...”,结果
我正在制作一个模拟 NHL 选秀彩票的程序,其中屏幕右侧应该有一个 JTextField,并且在左侧绘制弹跳的选秀球。我创建了一个名为 Ball 的类,它实现了 Runnable,并在我的主 Draf
这个问题已经有答案了: How can I calculate a time span in Java and format the output? (18 个回答) 已关闭 9 年前。 这是我的代码
我有一个 ASP.NET Web API 应用程序在我的本地 IIS 实例上运行。 Web 应用程序配置有 CORS。我调用的 Web API 方法类似于: [POST("/API/{foo}/{ba
我将用户输入的时间和日期作为: DatePicker dp = (DatePicker) findViewById(R.id.datePicker); TimePicker tp = (TimePic
放宽“邻居”的标准是否足够,或者是否有其他标准行动可以采取? 最佳答案 如果所有相邻解决方案都是 Tabu,则听起来您的 Tabu 列表的大小太长或您的释放策略太严格。一个好的 Tabu 列表长度是
我正在阅读来自 cppreference 的代码示例: #include #include #include #include template void print_queue(T& q)
我快疯了,我试图理解工具提示的行为,但没有成功。 1. 第一个问题是当我尝试通过插件(按钮 1)在点击事件中使用它时 -> 如果您转到 Fiddle,您会在“内容”内看到该函数' 每次点击都会调用该属
我在功能组件中有以下代码: const [ folder, setFolder ] = useState([]); const folderData = useContext(FolderContex
我在使用预签名网址和 AFNetworking 3.0 从 S3 获取图像时遇到问题。我可以使用 NSMutableURLRequest 和 NSURLSession 获取图像,但是当我使用 AFHT
我正在使用 Oracle ojdbc 12 和 Java 8 处理 Oracle UCP 管理器的问题。当 UCP 池启动失败时,我希望关闭它创建的连接。 当池初始化期间遇到 ORA-02391:超过
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 9 年前。 Improve
引用这个plunker: https://plnkr.co/edit/GWsbdDWVvBYNMqyxzlLY?p=preview 我在 styles.css 文件和 src/app.ts 文件中指定
为什么我的条形这么细?我尝试将宽度设置为 1,它们变得非常厚。我不知道还能尝试什么。默认厚度为 0.8,这是应该的样子吗? import matplotlib.pyplot as plt import
当我编写时,查询按预期执行: SELECT id, day2.count - day1.count AS diff FROM day1 NATURAL JOIN day2; 但我真正想要的是右连接。当
我有以下时间数据: 0 08/01/16 13:07:46,335437 1 18/02/16 08:40:40,565575 2 14/01/16 22:2
一些背景知识 -我的 NodeJS 服务器在端口 3001 上运行,我的 React 应用程序在端口 3000 上运行。我在 React 应用程序 package.json 中设置了一个代理来代理对端
我面临着一个愚蠢的问题。我试图在我的 Angular 应用程序中延迟加载我的图像,我已经尝试过这个2: 但是他们都设置了 src attr 而不是 data-src,我在这里遗漏了什么吗?保留 d
我是一名优秀的程序员,十分优秀!