gpt4 book ai didi

r - 使用 SparkR 1.5 从 RStudio 中的 hdfs 读取大文件(纯文本、xml、json、csv)的选项

转载 作者:行者123 更新时间:2023-12-04 17:10:09 25 4
gpt4 key购买 nike

我是 Spark 的新手,想知道除了下面的选项之外,是否还有其他选项可以使用 SparkR 从 RStudio 读取存储在 hdfs 中的数据,或者我是否正确使用它们。数据可以是任何类型(纯文本、csv、json、xml 或任何包含关系表的数据库)和任何大小(1kb - 几 GB)。

我知道不应再使用 textFile(sc, path) ,但是除了 read.df 函数之外,还有其他可能读取此类数据吗?

以下代码使用 read.df 和 jsonFile 但 jsonFile 产生错误:

Sys.setenv(SPARK_HOME = "C:\\Users\\--\\Downloads\\spark-1.5.0-bin-hadoop2.6")
.libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"), .libPaths()))
#load the Sparkr library
library(SparkR)

# Create a spark context and a SQL context
sc <- sparkR.init(master="local", sparkPackages="com.databricks:spark-csv_2.11:1.0.3")
sqlContext <- sparkRSQL.init(sc)

#create a sparkR DataFrame
df <- read.df(sqlContext, "hdfs://0.0.0.0:19000/people.json", source = "json")
df <- jsonFile(sqlContext, "hdfs://0.0.0.0:19000/people.json")

read.df 适用于 json,但如何读取文本(例如仅由新行分隔的日志消息)?例如。
> df <- read.df(sqlContext, "hdfs://0.0.0.0:19000/README.txt", "text")
Error in invokeJava(isStatic = TRUE, className, methodName, ...) :
java.lang.ClassNotFoundException: Failed to load class for data source: text.
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.lookupDataSource(ResolvedDataSource.scala:67)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:87)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:114)
at org.apache.spark.sql.api.r.SQLUtils$.loadDF(SQLUtils.scala:156)
at org.apache.spark.sql.api.r.SQLUtils.loadDF(SQLUtils.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.api.r.RBackendHandler.handleMethodCall(RBackendHandler.scala:132)
at org.apache.spark.api.r.RBackendHandler.channelRead0(RBackendHandler.scala:79)
at org.apache.spark.ap

jsonFile 的错误是:
> df <- jsonFile(sqlContext, "hdfs://0.0.0.0:19000/people.json")
Error in invokeJava(isStatic = FALSE, objId$id, methodName, ...) :
java.io.IOException: No input paths specified in job
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:201)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfu

我不知道为什么 read.df 会抛出错误,因为我没有重新启动 SparkR 或调用 SparkR.stop()

对于除了使用 read.df 之外的相同代码,我使用 SparkR:::textFile 函数和 sc 而不是 sqlContext(遵循 amplab 上的过时介绍)。

错误信息是:
data <- SparkR:::textFile(sc, "hdfs://0.0.0.0:19000/people.json")
Error in invokeJava(isStatic = FALSE, objId$id, methodName, ...) :
java.lang.IllegalArgumentException: java.net.URISyntaxException: Expected scheme-specific part at index 5: hdfs:
at org.apache.hadoop.fs.Path.initialize(Path.java:206)
at org.apache.hadoop.fs.Path.<init>(Path.java:172)
at org.apache.hadoop.fs.Path.<init>(Path.java:94)
at org.apache.hadoop.fs.Globber.glob(Globber.java:211)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1644)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:257)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at or

这个错误看起来路径不正确,但我不知道为什么。

我目前使用的:

spark-1.5.0-bin-hadoop2.6
hadoop-2.6.0
window (8.1)
R 版本 3.2.2
Rstudio 版本 0.99.484

我希望有人可以在这里给我一些关于这个问题的提示。

最佳答案

尝试

    % hadoop fs -put people.json /
% sparkR
> people <- read.df(sqlContext, "/people.json", "json")
> head(people)

关于r - 使用 SparkR 1.5 从 RStudio 中的 hdfs 读取大文件(纯文本、xml、json、csv)的选项,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32585686/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com