- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 Wikibooks 上的 AwesomeCollections 库
https://en.wikibooks.org/wiki/F_Sharp_Programming/Advanced_Data_Structures
从该页面,我复制粘贴了标记为 .fsi 和 .fs 的 2 个单独的文件代码
我必须承认我不太了解 .fsi 和 .fs 文件如何交互,以及在 https://msdn.microsoft.com/en-us/library/dd233196.aspx 上找到的解释。对我来说很神秘。
通过一些重新格式化,如果我提出解决方案并仅使用 .fs 文件,它就可以正常工作。
但是,同时使用 .fsi 和 .fs 文件,我收到错误消息,例如
“未定义命名空间‘堆’”(在项目的主 .fs 文件中)
“没有可用于‘int BinaryHeap’类型的构造函数”(在项目的主 .fs 文件中)
“实现文件中的意外关键字‘类型’”(尝试在 .fs 文件中定义类型队列时)
(* AwesomeCollections.fsi *)
namespace AwesomeCollections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack = begin
val hd : 'a stack -> 'a
val tl : 'a stack -> 'a stack
val cons : 'a -> 'a stack -> 'a stack
val empty : 'a stack
val rev : 'a stack -> 'a stack
end
[<Class>]
type 'a Queue =
member hd : 'a
member tl : 'a Queue
member enqueue : 'a -> 'a Queue
static member empty : 'a Queue
[<Class>]
type BinaryTree<'a when 'a : comparison> =
member hd : 'a
member left : 'a BinaryTree
member right : 'a BinaryTree
member exists : 'a -> bool
member insert : 'a -> 'a BinaryTree
member print : unit -> unit
static member empty : 'a BinaryTree
//[<Class>]
//type 'a AvlTree =
// member Height : int
// member Left : 'a AvlTree
// member Right : 'a AvlTree
// member Value : 'a
// member Insert : 'a -> 'a AvlTree
// member Contains : 'a -> bool
//
//module AvlTree =
// [<GeneralizableValue>]
// val empty<'a> : AvlTree<'a>
[<Class>]
type 'a BinaryHeap =
member hd : 'a
member tl : 'a BinaryHeap
member insert : 'a -> 'a BinaryHeap
member merge : 'a BinaryHeap -> 'a BinaryHeap
interface System.Collections.IEnumerable
interface System.Collections.Generic.IEnumerable<'a>
static member make : ('b -> 'b -> int) -> 'b BinaryHeap
(* AwesomeCollections.fs *)
namespace AwesomeCollections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
let hd = function
| EmptyStack -> failwith "Empty stack"
| StackNode(hd, tl) -> hd
let tl = function
| EmptyStack -> failwith "Emtpy stack"
| StackNode(hd, tl) -> tl
let cons hd tl = StackNode(hd, tl)
let empty = EmptyStack
let rec rev s =
let rec loop acc = function
| EmptyStack -> acc
| StackNode(hd, tl) -> loop (StackNode(hd, acc)) tl
loop EmptyStack s
type Queue<'a>(f : stack<'a>, r : stack<'a>) =
let check = function
| EmptyStack, r -> Queue(Stack.rev r, EmptyStack)
| f, r -> Queue(f, r)
member this.hd =
match f with
| EmptyStack -> failwith "empty"
| StackNode(hd, tl) -> hd
member this.tl =
match f, r with
| EmptyStack, _ -> failwith "empty"
| StackNode(x, f), r -> check(f, r)
member this.enqueue(x) = check(f, StackNode(x, r))
static member empty = Queue<'a>(Stack.empty, Stack.empty)
type color = R | B
type 'a tree =
| E
| T of color * 'a tree * 'a * 'a tree
module Tree =
let hd = function
| E -> failwith "empty"
| T(c, l, x, r) -> x
let left = function
| E -> failwith "empty"
| T(c, l, x, r) -> l
let right = function
| E -> failwith "empty"
| T(c, l, x, r) -> r
let rec exists item = function
| E -> false
| T(c, l, x, r) ->
if item = x then true
elif item < x then exists item l
else exists item r
let balance = function (* Red nodes in relation to black root *)
| B, T(R, T(R, a, x, b), y, c), z, d (* Left, left *)
| B, T(R, a, x, T(R, b, y, c)), z, d (* Left, right *)
| B, a, x, T(R, T(R, b, y, c), z, d) (* Right, left *)
| B, a, x, T(R, b, y, T(R, c, z, d)) (* Right, right *)
-> T(R, T(B, a, x, b), y, T(B, c, z, d))
| c, l, x, r -> T(c, l, x, r)
let insert item tree =
let rec ins = function
| E -> T(R, E, item, E)
| T(c, a, y, b) as node ->
if item = y then node
elif item < y then balance(c, ins a, y, b)
else balance(c, a, y, ins b)
(* Forcing root node to be black *)
match ins tree with
| E -> failwith "Should never return empty from an insert"
| T(_, l, x, r) -> T(B, l, x, r)
let rec print (spaces : int) = function
| E -> ()
| T(c, l, x, r) ->
print (spaces + 4) r
printfn "%s %A%A" (new System.String(' ', spaces)) c x
print (spaces + 4) l
type BinaryTree<'a when 'a : comparison> (inner : 'a tree) =
member this.hd = Tree.hd inner
member this.left = BinaryTree(Tree.left inner)
member this.right = BinaryTree(Tree.right inner)
member this.exists item = Tree.exists item inner
member this.insert item = BinaryTree(Tree.insert item inner)
member this.print() = Tree.print 0 inner
static member empty = BinaryTree<'a>(E)
type 'a heap =
| EmptyHeap
| HeapNode of int * 'a * 'a heap * 'a heap
module Heap =
let height = function
| EmptyHeap -> 0
| HeapNode(h, _, _, _) -> h
(* Helper function to restore the leftist property *)
let makeT (x, a, b) =
if height a >= height b then HeapNode(height b + 1, x, a, b)
else HeapNode(height a + 1, x, b, a)
let rec merge comparer = function
| x, EmptyHeap -> x
| EmptyHeap, x -> x
| (HeapNode(_, x, l1, r1) as h1), (HeapNode(_, y, l2, r2) as h2) ->
if comparer x y <= 0 then makeT(x, l1, merge comparer (r1, h2))
else makeT (y, l2, merge comparer (h1, r2))
let hd = function
| EmptyHeap -> failwith "empty"
| HeapNode(h, x, l, r) -> x
let tl comparer = function
| EmptyHeap -> failwith "empty"
| HeapNode(h, x, l, r) -> merge comparer (l, r)
let rec to_seq comparer = function
| EmptyHeap -> Seq.empty
| HeapNode(h, x, l, r) as node -> seq { yield x; yield! to_seq comparer (tl comparer node) }
type 'a BinaryHeap(comparer : 'a -> 'a -> int, inner : 'a heap) =
(* private *)
member this.inner = inner
(* public *)
member this.hd = Heap.hd inner
member this.tl = BinaryHeap(comparer, Heap.tl comparer inner)
member this.merge (other : BinaryHeap<_>) = BinaryHeap(comparer, Heap.merge comparer (inner, other.inner))
member this.insert x = BinaryHeap(comparer, Heap.merge comparer (inner,(HeapNode(1, x, EmptyHeap, EmptyHeap))))
interface System.Collections.Generic.IEnumerable<'a> with
member this.GetEnumerator() = (Heap.to_seq comparer inner).GetEnumerator()
interface System.Collections.IEnumerable with
member this.GetEnumerator() = (Heap.to_seq comparer inner :> System.Collections.IEnumerable).GetEnumerator()
static member make(comparer) = BinaryHeap<_>(comparer, EmptyHeap)
type 'a lazyStack =
| Node of Lazy<'a * 'a lazyStack>
| EmptyStack
module LazyStack =
let (|Cons|Nil|) = function
| Node(item) ->
let hd, tl = item.Force()
Cons(hd, tl)
| EmptyStack -> Nil
let hd = function
| Cons(hd, tl) -> hd
| Nil -> failwith "empty"
let tl = function
| Cons(hd, tl) -> tl
| Nil -> failwith "empty"
let cons(hd, tl) = Node(lazy(hd, tl))
let empty = EmptyStack
let rec append x y =
match x with
| Cons(hd, tl) -> Node(lazy(printfn "appending... got %A" hd; hd, append tl y))
| Nil -> y
let rec iter f = function
| Cons(hd, tl) -> f(hd); iter f tl
| Nil -> ()
///////////////// preparing the data ////////////////////
open System
open System.Collections.Generic
open System.IO
open AwesomeCollections
open AwesomeCollections.Stack
open AwesomeCollections.Heap
let stopWatch = System.Diagnostics.Stopwatch.StartNew()
let x = File.ReadAllLines "C:\Users\Fagui\Documents\GitHub\Learning Fsharp\Algo Stanford\PA 6 - median.txt"
let lowheap = new BinaryHeap<int>(compare,EmptyHeap)
let highheap = new BinaryHeap<int>(compare,EmptyHeap)
// this file used without the fsi file works
// but i don't know why
(* AwesomeCollections_bis.fs *)
namespace AwesomeCollections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
let hd = function
| EmptyStack -> failwith "Empty stack"
| StackNode(hd, tl) -> hd
let tl = function
| EmptyStack -> failwith "Empty stack"
| StackNode(hd, tl) -> tl
let cons hd tl = StackNode(hd, tl)
let empty = EmptyStack
let rec rev s =
let rec loop acc = function
| EmptyStack -> acc
| StackNode(hd, tl) -> loop (StackNode(hd, acc)) tl
loop EmptyStack s
type Queue<'a>(f : stack<'a>, r : stack<'a>) =
let check = function
| EmptyStack, r -> Queue(Stack.rev r, EmptyStack)
| f, r -> Queue(f, r)
member this.hd =
match f with
| EmptyStack -> failwith "empty"
| StackNode(hd, tl) -> hd
member this.tl =
match f, r with
| EmptyStack, _ -> failwith "empty"
| StackNode(x, f), r -> check(f, r)
member this.enqueue(x) = check(f, StackNode(x, r))
static member empty = Queue<'a>(Stack.empty, Stack.empty)
type color = R | B
type 'a tree =
| E
| T of color * 'a tree * 'a * 'a tree
module Tree =
let hd = function
| E -> failwith "empty"
| T(c, l, x, r) -> x
let left = function
| E -> failwith "empty"
| T(c, l, x, r) -> l
let right = function
| E -> failwith "empty"
| T(c, l, x, r) -> r
let rec exists item = function
| E -> false
| T(c, l, x, r) ->
if item = x then true
elif item < x then exists item l
else exists item r
let balance = function (* Red nodes in relation to black root *)
| B, T(R, T(R, a, x, b), y, c), z, d (* Left, left *)
| B, T(R, a, x, T(R, b, y, c)), z, d (* Left, right *)
| B, a, x, T(R, T(R, b, y, c), z, d) (* Right, left *)
| B, a, x, T(R, b, y, T(R, c, z, d)) (* Right, right *)
-> T(R, T(B, a, x, b), y, T(B, c, z, d))
| c, l, x, r -> T(c, l, x, r)
let insert item tree =
let rec ins = function
| E -> T(R, E, item, E)
| T(c, a, y, b) as node ->
if item = y then node
elif item < y then balance(c, ins a, y, b)
else balance(c, a, y, ins b)
(* Forcing root node to be black *)
match ins tree with
| E -> failwith "Should never return empty from an insert"
| T(_, l, x, r) -> T(B, l, x, r)
let rec print (spaces : int) = function
| E -> ()
| T(c, l, x, r) ->
print (spaces + 4) r
printfn "%s %A%A" (new System.String(' ', spaces)) c x
print (spaces + 4) l
type BinaryTree<'a when 'a : comparison> (inner : 'a tree) =
member this.hd = Tree.hd inner
member this.left = BinaryTree(Tree.left inner)
member this.right = BinaryTree(Tree.right inner)
member this.exists item = Tree.exists item inner
member this.insert item = BinaryTree(Tree.insert item inner)
member this.print() = Tree.print 0 inner
static member empty = BinaryTree<'a>(E)
type 'a heap =
| EmptyHeap
| HeapNode of int * 'a * 'a heap * 'a heap
module Heap =
let height = function
| EmptyHeap -> 0
| HeapNode(h, _, _, _) -> h
(* Helper function to restore the leftist property *)
let makeT (x, a, b) =
if height a >= height b then HeapNode(height b + 1, x, a, b)
else HeapNode(height a + 1, x, b, a)
let rec merge comparer = function
| x, EmptyHeap -> x
| EmptyHeap, x -> x
| (HeapNode(_, x, l1, r1) as h1), (HeapNode(_, y, l2, r2) as h2) ->
if comparer x y <= 0 then makeT(x, l1, merge comparer (r1, h2))
else makeT (y, l2, merge comparer (h1, r2))
let hd = function
| EmptyHeap -> failwith "empty"
| HeapNode(h, x, l, r) -> x
let tl comparer = function
| EmptyHeap -> failwith "empty"
| HeapNode(h, x, l, r) -> merge comparer (l, r)
let rec to_seq comparer = function
| EmptyHeap -> Seq.empty
| HeapNode(h, x, l, r) as node -> seq { yield x; yield! to_seq comparer (tl comparer node) }
type 'a BinaryHeap(comparer : 'a -> 'a -> int, inner : 'a heap) =
(* private *)
member this.inner = inner
(* public *)
member this.hd = Heap.hd inner
member this.tl = BinaryHeap(comparer, Heap.tl comparer inner)
member this.merge (other : BinaryHeap<_>) = BinaryHeap(comparer, Heap.merge comparer (inner, other.inner))
member this.insert x = BinaryHeap(comparer, Heap.merge comparer (inner,(HeapNode(1, x, EmptyHeap, EmptyHeap))))
interface System.Collections.Generic.IEnumerable<'a> with
member this.GetEnumerator() = (Heap.to_seq comparer inner).GetEnumerator()
interface System.Collections.IEnumerable with
member this.GetEnumerator() = (Heap.to_seq comparer inner :> System.Collections.IEnumerable).GetEnumerator()
static member make(comparer) = BinaryHeap<_>(comparer, EmptyHeap)
type 'a lazyStack =
| Node of Lazy<'a * 'a lazyStack>
| EmptyStack
module LazyStack =
let (|Cons|Nil|) = function
| Node(item) ->
let hd, tl = item.Force()
Cons(hd, tl)
| EmptyStack -> Nil
let hd = function
| Cons(hd, tl) -> hd
| Nil -> failwith "empty"
let tl = function
| Cons(hd, tl) -> tl
| Nil -> failwith "empty"
let cons(hd, tl) = Node(lazy(hd, tl))
let empty = EmptyStack
let rec append x y =
match x with
| Cons(hd, tl) -> Node(lazy(printfn "appending... got %A" hd; hd, append tl y))
| Nil -> y
let rec iter f = function
| Cons(hd, tl) -> f(hd); iter f tl
| Nil -> ()
最佳答案
我认为你的代码没有编译的原因是 fsi
interface文件隐藏了BinaryHeap
的构造函数,因此以下内容不起作用,因为构造函数是私有(private)的:
let highheap = new BinaryHeap<int>(compare,EmptyHeap)
make
静态成员,所以我认为您可以使用它:
let highheap = BinaryHeap.make compare
关于module - F# 命名空间和模块 : Awesome collections from Wikibooks,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35308322/
我有以下代码: interface F { (): string; a(): number; } function f() { return '3'; } f['a'] = f
比如我有一个 vector vector > v={{true,1},{true,2},{false,3},{false,4},{false,5},{true,6},{false,7},{true,8
我需要编写一个要在 GHCi 上运行的模块,并将函数组合为相同的函数。这个(经典的fog(x) = f(g(x)))运行: (.) f g = (\x -> f (g x)). 当我尝试这样写时出现问
动态规划这里有一个问题 大写字母AZ对应于整数[-13,12],因此一个字符串对应于一整列。我们将对应的整列的总和称为字符串的特征值。例如:字符串ACM对应的总体列为{-13,-11,-1},则ACM
我想知道为什么 F-Sharp 不支持无穷大。 这适用于 Ruby(但不适用于 f#): let numbers n = [1 .. 1/0] |> Seq.take(n) -> System.Div
如何从已编译的 F# 程序中的字符串执行 F# 代码? 最佳答案 这是一个小脚本,它使用 FSharp CodeDom 将字符串编译为程序集,并将其动态加载到脚本 session 中。 它使用类型扩展
有什么方法可以在 F# List 和 F# Tuple 之间转换? 例如: [1;2;3] -> (1,2,3) (1,2,3,4) -> [1;2;3;4] 我需要两个函数来做到这一点: le
我想将一个或多个 .fsx 文件加载到 F# 交互中,并将 .fsx 文件中定义的所有函数都包含在作用域中,以便我可以直接使用控制台中的功能。 #load 指令执行指定的 .fsx 文件,但随后我无法
我正在尝试像 this page 中那样编写 F 代数.不同之处在于,不是用元组组合,而是像这样: type FAlgebra[F[_], A] = F[A] => A def algebraZip[
给定一个 F# 记录: type R = { X : string ; Y : string } 和两个对象: let a = { X = null ; Y = "##" } let b = {
所以我们有一组文件名\url,如file、folder/file、folder/file2、folder/file3、folder/folder2/fileN等。我们得到一个字符串,如文件夹/。我们想
假设我有一个字符串“COLIN”。 这个字符串的数值是: 3 + 15 + 12 + 9 + 14 = 53. 所以 A = 1, B = 2, C = 3, and so on. 为此,我什至不知道
在 C# 中,我有以下代码来创建一个对象实例。 var myObject = new MyClass("paramvalue") { Property1 = "value1" Proper
即,标准库中有这样的函数吗? let ret x _ = x 为了保持代码可读性,我想尽量减少自制基本构建功能构建块的数量,并使用现有的东西。 最佳答案 不。你可能想看看 FSharpX。 关于f#
目前,我有一个函数可以将列表中每个列表的第一个元素( float )返回到单独的列表。 let firstElements list = match list with | head:
我刚刚解决了problem23在 Project Euler 中,我需要一个 set 来存储所有丰富的数字。 F# 有一个不可变集合,我可以使用 Set.empty.Add(i) 创建一个包含数字 i
F#语言具有计算自然对数的函数log和计算以10为底的对数的log10。 在F#中以2为底的对数的最佳计算方法是什么? 最佳答案 您可以简单地使用以下事实:“ b的a对数” = ln(b)/ ln(a
动机 我有一个长时间运行的 bool 函数,它应该在数组中执行,如果数组中的元素满足条件,我想立即返回。我想并行搜索并在第一个完整线程返回正确答案时终止其他线程。 问题 在 F# 中实现并行存在函数的
我最近完成了一个生成字符串列表的项目,我想知道执行此操作的最佳方法。 字符串生成是上下文敏感的,以确定它是否可以接受(这是游戏中的一系列游戏,所以你必须知道最后一次游戏是什么) 我这样做的方法是使用一
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
我是一名优秀的程序员,十分优秀!