- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在准备一个带有 id 和我的特征向量的 DataFrame,以便稍后用于进行预测。我在我的数据框上做了一个 groupBy,在我的 groupBy 中,我将几列作为列表合并到一个新列中:
def mergeFunction(...) // with 14 input variables
val myudffunction( mergeFunction ) // Spark doesn't support this
df.groupBy("id").agg(
collect_list(df(...)) as ...
... // too many of these (something like 14 of them)
).withColumn("features_labels",
myudffunction(
col(...)
, col(...) )
.select("id", "feature_labels")
I am not sure how else I can fix this? Is the size of udf inputs in Spark going to get bigger, am have I understood them incorrectly, or there is a better way?
最佳答案
用户定义的函数最多可定义 22 个参数。仅限 udf
helper 最多为 10 个参数定义。要处理具有大量参数的函数,您可以使用 org.apache.spark.sql.UDFRegistration
.
例如
val dummy = ((
x0: Int, x1: Int, x2: Int, x3: Int, x4: Int, x5: Int, x6: Int, x7: Int,
x8: Int, x9: Int, x10: Int, x11: Int, x12: Int, x13: Int, x14: Int,
x15: Int, x16: Int, x17: Int, x18: Int, x19: Int, x20: Int, x21: Int) => 1)
import org.apache.spark.sql.expressions.UserDefinedFunction
val dummyUdf: UserDefinedFunction = spark.udf.register("dummy", dummy)
val df = spark.range(1)
val exprs = (0 to 21).map(_ => lit(1))
df.select(dummyUdf(exprs: _*))
callUdf
点名
import org.apache.spark.sql.functions.callUDF
df.select(
callUDF("dummy", exprs: _*).alias("dummy")
)
df.selectExpr(s"""dummy(${Seq.fill(22)(1).mkString(",")})""")
UserDefinedFunction
目的:
import org.apache.spark.sql.expressions.UserDefinedFunction
Seq(1).toDF.select(UserDefinedFunction(dummy, IntegerType, None)(exprs: _*))
array
,
map
)或
struct
作为输入或将其分为多个模块。例如:
val aLongArray = array((0 to 256).map(_ => lit(1)): _*)
val udfWitharray = udf((xs: Seq[Int]) => 1)
Seq(1).toDF.select(udfWitharray(aLongArray).alias("dummy"))
关于scala - 当 udf 函数不接受足够大的输入变量时 Spark DataFrames,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39494620/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!