gpt4 book ai didi

python - 如何将 MultiIndex 转换并 reshape 为 3D Numpy 数组?

转载 作者:行者123 更新时间:2023-12-04 16:35:44 28 4
gpt4 key购买 nike

我在数据框中有 4D 数据。我需要将它转换为 3D Numpy 数组。我可以使用 for 循环来做到这一点,但有没有更有效的方法?

# Data:
df = pd.DataFrame()
df['variable'] = ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D', 'A',
'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D']
df['date'] = [101,102,103]*8
df['itemID'] = ['item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item2',
'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2']
df['value1'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12]
df['value2'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12]
df['value3'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12]
df['value4'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12]

# Pivoting:
pivoted = df.pivot(index=['itemID', 'date'], columns='variable', values=[*df.columns[df.columns.str.startswith('value')]])
pivoted.index.levshape

关卡形状为:(2, 3)

它看起来像这样:

data after pivoting

# To Numpy:
pivoted2array = pivoted.to_numpy()
pivoted2array.shape

形状现在是:(6, 16)

# Reshaping to 3D:
pivoted2array3d = pivoted2array.reshape(*pivoted.index.levshape,-1)
pivoted2array3d.shape

形状现在是:(2, 3, 16)

它看起来像这样:

array([[[ 1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,  4],
[ 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8],
[ 9, 10, 11, 12, 9, 10, 11, 12, 9, 10, 11, 12, 9, 10, 11, 12]],

[[ 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4],
[ 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8],
[ 9, 10, 11, 12, 9, 10, 11, 12, 9, 10, 11, 12, 9, 10, 11, 12]]])

这是我使用 for 循环转换(重新排序)值的麻烦部分:

dimension3 = []
for k in range(pivoted2array3d.shape[0]): # unique items
for j in range(pivoted2array3d.shape[1]): # unique dates
for i in range(pivoted2array3d.shape[2])[0:pivoted2array3d.shape[2]:4]:
element = pivoted2array3d[k][j][i]
dimension3.append(element)
for l in range(pivoted2array3d.shape[2])[0+1:pivoted2array3d.shape[2]:4]:
element = pivoted2array3d[k][j][l]
dimension3.append(element)
for m in range(pivoted2array3d.shape[2])[0+2:pivoted2array3d.shape[2]:4]:
element = pivoted2array3d[k][j][m]
dimension3.append(element)
for n in range(pivoted2array3d.shape[2])[0+3:pivoted2array3d.shape[2]:4]:
element = pivoted2array3d[k][j][n]
dimension3.append(element)
len(dimension3)

结果我有一个长度为 96 的列表。

然后我将它 reshape 回 3D Numpy 数组:

final = np.array(dimension3).reshape(*pivoted2array3d.shape)
final.shape

它又具有形状:(2, 3, 16)

最终的结果看起来像这样:

array([[[ 1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,  4,  4,  4,  4],
[ 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8],
[ 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12]],

[[ 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4],
[ 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8],
[ 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12]]])

是否有计算上更优雅的方法来重新排序我的数组?有没有办法减少 reshape 步骤?我真的很想学习如何使用 Numpy 操作!

我的真实数据包括数千个项目、数百个日期、数十个变量和值变量。

测试建议的解决方案

感谢 Shubham Sharma、Quang Hoang 和 mathfux 提供的解决方案。我只为 item1 添加了一个日期,并需要为 item2 填充缺失的日期,从而使初始数据变得更加复杂。提议的解决方案仍然有效。

新数据:

df = pd.DataFrame()
df['variable'] = ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D', 'A',
'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'D', 'D', 'D', 'A', 'B', 'C', 'D']
df['date'] = [101,102,103]*8 + [104,104,104,104]
df['itemID'] = ['item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item1', 'item2',
'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2', 'item2']
df['value1'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12,13,13,13,13]
df['value2'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12,13,13,13,13]
df['value3'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12,13,13,13,13]
df['value4'] = [1,5,9,2,6,10,3,7,11,4,8,12,1,5,9,2,6,10,3,7,11,4,8,12,13,13,13,13]

旋转和重新索引:

pivoted = df.pivot(index=['itemID', 'date'], columns='variable', values=[*df.columns[df.columns.str.startswith('value')]])
m = pd.MultiIndex.from_product([df['itemID'].unique(),df['date'].unique()], names=pivoted.index.names)
pt = pivoted.reindex(m, fill_value = 0)

解决方案一:

%%time
pt.sort_index(level=1, axis=1)\
.values.reshape(*pivoted.index.levshape[:2], -1)

CPU 时间:用户 895 微秒,系统:135 微秒,总计:1.03 毫秒挂墙时间:930 微秒

解决方案 2:

%%time
pt.stack(level=0).unstack().to_numpy().reshape(-1, df.date.nunique(), pt.shape[1])

CPU 时间:用户 6.53 毫秒,系统:1.62 毫秒,总计:8.15 毫秒挂墙时间:6.58 毫秒

解决方案 3:

%%time
pt.to_numpy().reshape(2,df.date.nunique(),4,4).swapaxes(2,3).reshape(2,df.date.nunique(),16)

CPU 时间:用户 387 微秒,系统:24 微秒,总计:411 微秒挂墙时间:397 微秒

最佳答案

好像np.swapaxes做你需要的技巧:arr.reshape(2,3,4,4).swapaxes(2,3).reshape(2,3,16)

主要思想是交换最内部数据中的轴:

[ 1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,  4] ->
[[ 1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]] ->
[ 1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] ->
[ 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]

关于python - 如何将 MultiIndex 转换并 reshape 为 3D Numpy 数组?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/70099337/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com