- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
假设我有一个这样的数据框:
df <- data.frame(year_day = rep(1:365, 3),
year = rep(2001:2003, each = 365),
value = sin(2*pi*rep(1:365, 3)/365))
它表示从 2001 年到 2003 年一年中的每一天 (year_day
) 的一些值 (value
)。我想绘制每一年并使用 ggplot2
这样做。
ggplot(df) + geom_point(aes(year_day, value)) + facet_wrap(~year, ncol=1)
这给了我:
太棒了。现在,假设我想稍微扩展我的绘图区域,以便每年包括前一年的 3 个月和下一年的 3 个月(如果这些数据存在)。这意味着某些数据将被绘制两次。例如,2003 年的前三个月将出现在 2002 年和 2003 年的图中。因此,我可以复制这些行并将它们分配给 2002 年,但 year-day
为 366 到 485。这有效,但很笨拙。有没有更优雅的解决方案?
最佳答案
这是我考虑了一段时间的事情,所以这是尝试实现它的充分理由。它仍然涉及复制行,这很笨拙,但这是我能想到的最好的方法。
这是一个整洁的管道函数,它将一个数据帧(甚至是一个分组的数据帧)作为它的第一个参数,并将一列日期作为它的第二个参数。有一个可选的第三个参数来扩展每个窗口扩展的距离(默认为 0.25,或 3 个月)。第四个论点是关于财政年度或学年等不是一月一月的事情,但我还没有深入思考过那个。
输出是相同的数据框,年份尾部有重复的行,还有额外的列 doy_wrapped 表示一年中的第几天(从负数到 >365),以及 nominal_yr,这是每个窗口居中的年份。
示例,使用数据集 ggplot2::economics
:
library(dplyr)
library(lubridate)
economics %>%
filter(year(date) > 2007)
# A tibble: 88 x 6
date pce pop psavert uempmed unemploy
<date> <dbl> <int> <dbl> <dbl> <int>
1 2008-01-01 9963.2 303506 3.4 9.0 7685
2 2008-02-01 9955.7 303711 3.9 8.7 7497
3 2008-03-01 10004.2 303907 4.0 8.7 7822
4 2008-04-01 10044.6 304117 3.5 9.4 7637
5 2008-05-01 10093.3 304323 7.9 7.9 8395
6 2008-06-01 10149.4 304556 5.6 9.0 8575
7 2008-07-01 10151.1 304798 4.4 9.7 8937
8 2008-08-01 10140.3 305045 3.7 9.7 9438
9 2008-09-01 10083.2 305309 4.4 10.2 9494
10 2008-10-01 9983.3 305554 5.4 10.4 10074
# ... with 78 more rows
economics %>%
filter(year(date) > 2007) %>%
wrap_years(date, expand = 3/12)
# A tibble: 136 x 8
# Groups: nominal_yr [8]
date pce pop psavert uempmed unemploy nominal_yr doy_wrapped
<date> <dbl> <int> <dbl> <dbl> <int> <dbl> <dbl>
1 2008-01-01 9963.2 303506 3.4 9.0 7685 2008 1
2 2008-02-01 9955.7 303711 3.9 8.7 7497 2008 32
3 2008-03-01 10004.2 303907 4.0 8.7 7822 2008 61
4 2008-04-01 10044.6 304117 3.5 9.4 7637 2008 92
5 2008-05-01 10093.3 304323 7.9 7.9 8395 2008 122
6 2008-06-01 10149.4 304556 5.6 9.0 8575 2008 153
7 2008-07-01 10151.1 304798 4.4 9.7 8937 2008 183
8 2008-08-01 10140.3 305045 3.7 9.7 9438 2008 214
9 2008-09-01 10083.2 305309 4.4 10.2 9494 2008 245
10 2008-10-01 9983.3 305554 5.4 10.4 10074 2009 -90
# ... with 126 more rows
这确实有点打乱了秩序;它按顺序将行一式三份,然后将它们重新分配给邻近的年份。它保留了原始分组,同时为新的 nominal_yr 添加了一个分组(以删除可能缺少中央年份数据的孤立尾部)。
economics %>%
filter(year(date) > 2007) %>%
wrap_years(date, expand = 3/12) %>%
ggplot(aes(doy_wrapped, unemploy)) +
geom_line() + facet_wrap(~nominal_yr, ncol = 3)
然后一些技巧来装饰它并校正轴:
economics %>%
filter(year(date) > 2007) %>%
wrap_years(date, expand = 3/12) %>%
ggplot(aes(doy_wrapped + ymd("1900-01-01") - 1, unemploy)) +
geom_line() + facet_wrap(~nominal_yr, ncol = 2) +
geom_vline(xintercept = as.numeric(c(ymd("1900-01-01"), ymd("1901-01-01")))) +
scale_x_date(date_breaks = "2 months",date_labels = "%b",
name = NULL, expand = c(0,0) +
theme_minimal() +
theme(panel.spacing.x = unit(1, "cm"))
aes(...)
中的 + ymd("1900-01-01") - 1
是任意的,您只希望它与1 月 1 日,这样每年都有正确的月份。然后将它与垂直线中的 xintercept =
匹配。
理想情况下,这最终将成为 wrap_*
函数系列的一部分,适用于季度、月份、小时、十年等。
函数代码:
wrap_years <- function(df, datecol, expand = 0.25, offset = "2001-01-01") {
if(!is.data.frame(df)) {return(df)}
datecol <- enquo(datecol)
if(expand > 1) {
warning(paste0("Window expansions of > 1 are not supported."))
return(df)
}
if(!(quo_name(datecol) %in% names(df))) {
warning(paste0("Column '", quo_name(datecol), "' not found in data."))
return(df)
}
# offset <- as_date(offset)
# warning(paste0("Using ", stamp("August 26", orders = "md")(offset),
# " as start of year. Not yet implemented."))
if(!is.Date(df %>% pull(!!datecol))) {
warning(paste0("Use lubridate functions to parse '",
quo_name(datecol),
"' before proceeding."))
return(df)
}
df %>%
mutate(adj_wrap = list(-1:1)) %>%
tidyr::unnest() %>%
mutate(nominal_yr = year(!!datecol) - adj_wrap,
doy_wrapped = yday(!!datecol) + 365*adj_wrap) %>%
filter(between(doy_wrapped, -expand * 365, (1 + expand) * 365)) %>%
select(-adj_wrap) %>%
group_by(nominal_yr, add = T) %>%
filter(sum(year(!!datecol) != nominal_yr) != length(nominal_yr))
}
我曾假设复制最少的行数将是最快的方法,这是我第一次尝试它背后的范例。后来想想,我意识到一个更天真的方法是简单地复制所有行,事实证明这要快得多。然后过滤步骤用between
完成,也很快。这个版本的函数速度大约是以前版本的 2 倍(但绘制原始数据的速度大约是 0.01 倍)。
关于r - ggplot2,facet_wrap : plotting data twice in different facets,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46224719/
前 R 用户,我曾经通过 ggplotly() 函数广泛地结合 ggplot 和 plot_ly 库来显示数据。 刚到 Python 时,我看到 ggplot 库可用,但在与 plotly 的简单组合
ggplotly 使用 ggplot 删除 geom_line 图的图例。 见例如以下: library(plotly) g % ggplotly() 关于r - ggplotly 从 gg
我有一个 ggplot我试图以非常简约的外观制作线图的问题。我已经摆脱了图例,转而使用每行右侧的文本标签。如果标签不是那么长,它可能不会那么明显,但如果网格线停在最大 x 值(在这种情况下,在 201
我想使用相同的 ggplot 代码以我的数据框中的数字为条件生成 8 个不同的数字。通常我会使用 facet_grid,但在这种情况下,我希望最终得到每个单独数字的 pdf。例如,我想要这里的每一行一
当我在 ggplot 上使用 geom_text 时,与 ggplot 的“填充”选项发生冲突。 这是问题的一个明显例子: library(ggplot2) a=ChickWeight str(a)
是否可以结合使用 ggplot ly 和拼凑而成的ggplot? 例子 这将并排显示两个图 library(ggplot2) library(plotly) library(patchwork) a
我想绘制一个图表,其中 y 轴以百分比表示: p = ggplot(test, aes(x=creation_date, y=value, color=type)) + geom_line(aes
如何去除ggsave中的白边距? 我的问题和Remove white space (i.e., margins) ggplot2 in R一模一样。然而,那里的答案对我来说并不理想。我不想对固定但未知
我有一个带有一些文本层的条形图,在 ggplot 库中一切正常,但现在我想添加一些与 ggplotly 的交互性,但它无法显示文本层 我更新了所有软件包但问题仍然存在 df = read.table(
当我尝试在 ggplot 中为我的箱线图设置自定义宽度时,它工作正常: p=ggplot(iris, aes(x = Species,y=Sepal.Length )) + geom_boxplot(
我正在尝试为 ggplot 密度创建一个图例,将一个组与所有组进行比较。使用此示例 - R: Custom Legend for Multiple Layer ggplot - 我可以使用下面的代码成
所以我试图在一个多面的 ggplot 上编辑 y 值,因为我在编织时在情节上有几个不准确之处。我对 R 和 R Markdown 很陌生,所以我不太明白为什么,例如,美国的 GDP PPP 在美元金额
我需要在 python 条形图的 x 轴 ggplot 上格式化日期。 我该怎么做? 最佳答案 使用 scale_x_date() 格式化 x 轴上的日期。 p = ggplot(aes(x='dat
我想使用 ggplotly因为它的副作用相同ggplot甚至graphics做。我的意思是当我 knitr::knit或 rmarkdown::render我期望的 Rmd 文档 print(obj)
我在下面有一个简单的应用程序,它显示了一个 ggplot。 ggplot 在控制台中生成警告(见底部图片)。我想捕获警告,并将其显示在应用程序的情节下方。 这是我的代码: library(shiny)
如果显示的基本数据集很大(下面的示例工作代码),则在 Shiny 的应用程序中向/从 ggplot 添加/删除图层可能需要一段时间。 问题是: 有没有办法缓存 ggplot(基本图)并添加/删除/修改
我正在组合 ggplot 的多个绘图,使用网格视口(viewport),这是必要的(我相信),因为我想旋转绘图,这在标准 ggplot 中是不可能的,甚至可能是 gridExtra 包。 我想在两个图
我可以使用 lattice 在 R 中绘制相对频率直方图包裹: a <- runif(100) library(lattice) histogram(a) 我想在 ggplot 中获得相同的图形.我试
我需要重新安装 R,但我现在遇到了 ggplot 的一个小问题。我确信有一个简单的解决方案,我感谢所有提示! 我经常使用堆叠面积图,通常我通过定义因子水平并以相反的顺序绘制来获得所需的堆叠和图例顺序。
新的并且坚持使用ggplot: 我有以下数据: tribe rho preference_watermass 1 Luna2 -1.000 hypolimnic 2 OP10I-A1
我是一名优秀的程序员,十分优秀!