gpt4 book ai didi

tensorflow - tensorflow中的faster-rcnn配置文件

转载 作者:行者123 更新时间:2023-12-04 16:06:50 24 4
gpt4 key购买 nike

我正在使用 Google API for object detection在 tensorflow 中训练和推断自定义数据集。

我想调整配置文件的参数以更好地适应我的样本(例如区域提议的数量、ROI bbox 的大小等)。
为此,我需要知道每个参数的作用。
不幸的是,配置文件(找到 here )没有注释或解释。
一些,例如“num classes”是不言自明的,但其他的则很棘手。

我找到了 this file有更多评论,但无法将其“翻译”为我的格式。

我想知道以下其中一项:
1. google API config文件各参数说明
或者
2.从官方的faster-rcnn'翻译'到google的API配置
或者至少
3. 对faster-rcnn的参数技术细节进行了彻底的审查(官方文章没有提供所有细节)

谢谢你的热心帮助 !

配置文件示例:

# Faster R-CNN with Resnet-101 (v1) configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
faster_rcnn {
num_classes: 90
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_resnet101'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}

train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0003
schedule {
step: 0
learning_rate: .0003
}
schedule {
step: 900000
learning_rate: .00003
}
schedule {
step: 1200000
learning_rate: .000003
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}

train_input_reader: {
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}

eval_config: {
num_examples: 8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}

eval_input_reader: {
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle: false
num_readers: 1
num_epochs: 1
}

最佳答案

我发现了两个可以阐明配置文件的来源:
1.文件夹protos在 tensorflow github 中涵盖了所有配置选项,并对每个选项进行了一些注释。您应该检查 fast_rcnn.proto , eval.proto 和 train.proto 以获得最常见的
2. This Algorithmia 的博客文章彻底涵盖了在 Google 的 Open Images 数据集上下载、准备和训练更快的 RCNN 的所有步骤。 2/3-way through,有一些关于配置选项的讨论。

关于tensorflow - tensorflow中的faster-rcnn配置文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48382398/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com