gpt4 book ai didi

python - 类型错误 : linear(): argument 'input' (position 1) must be Tensor, 不是 str

转载 作者:行者123 更新时间:2023-12-04 15:57:24 29 4
gpt4 key购买 nike

所以我一直在尝试研究我在 github 上发现的一些 bert 示例,这是我第一次尝试使用 bert 并查看它是如何工作的。使用的呼吸即时消息如下:https://github.com/prateekjoshi565/Fine-Tuning-BERT/blob/master/Fine_Tuning_BERT_for_Spam_Classification.ipynb
我使用了不同的数据集,但是我遇到了问题 TypeError: linear(): argument 'input' (position 1) must be Tensor, not str"老实说,我不知道我做错了什么。有没有人可以帮助我?
我一直在使用的代码如下:

# convert class weights to tensor
weights= torch.tensor(class_wts,dtype=torch.float)
weights = weights.to(device)

# loss function
cross_entropy = nn.NLLLoss(weight=weights)

# number of training epochs
epochs = 10

def train():

model.train()

total_loss, total_accuracy = 0, 0

# empty list to save model predictions
total_preds=[]

# iterate over batches
for step,batch in enumerate(train_dataloader):

# progress update after every 50 batches.
if step % 50 == 0 and not step == 0:
print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader)))

# push the batch to gpu
batch = [r.to(device) for r in batch]

sent_id, mask, labels = batch

# clear previously calculated gradients
model.zero_grad()

# get model predictions for the current batch
preds = model(sent_id, mask)

# compute the loss between actual and predicted values
loss = cross_entropy(preds, labels)

# add on to the total loss
total_loss = total_loss + loss.item()

# backward pass to calculate the gradients
loss.backward()

# clip the the gradients to 1.0. It helps in preventing the exploding gradient problem
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

# update parameters
optimizer.step()

# model predictions are stored on GPU. So, push it to CPU
preds=preds.detach().cpu().numpy()

# append the model predictions
total_preds.append(preds)

# compute the training loss of the epoch
avg_loss = total_loss / len(train_dataloader)

# predictions are in the form of (no. of batches, size of batch, no. of classes).
# reshape the predictions in form of (number of samples, no. of classes)
total_preds = np.concatenate(total_preds, axis=0)

#returns the loss and predictions
return avg_loss, total_preds

def evaluate():

print("\nEvaluating...")

# deactivate dropout layers
model.eval()

total_loss, total_accuracy = 0, 0

# empty list to save the model predictions
total_preds = []

# iterate over batches
for step,batch in enumerate(val_dataloader):

# Progress update every 50 batches.
if step % 50 == 0 and not step == 0:

# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)

# Report progress.
print(' Batch {:>5,} of {:>5,}.'.format(step, len(val_dataloader)))

# push the batch to gpu
batch = [t.to(device) for t in batch]

sent_id, mask, labels = batch

# deactivate autograd
with torch.no_grad():

# model predictions
preds = model(sent_id, mask)

# compute the validation loss between actual and predicted values
loss = cross_entropy(preds,labels)

total_loss = total_loss + loss.item()

preds = preds.detach().cpu().numpy()

total_preds.append(preds)

# compute the validation loss of the epoch
avg_loss = total_loss / len(val_dataloader)

# reshape the predictions in form of (number of samples, no. of classes)
total_preds = np.concatenate(total_preds, axis=0)

return avg_loss, total_preds

# set initial loss to infinite
best_valid_loss = float('inf')

# empty lists to store training and validation loss of each epoch
train_losses=[]
valid_losses=[]

#for each epoch
for epoch in range(epochs):

print('\n Epoch {:} / {:}'.format(epoch + 1, epochs))

#train model
train_loss, _ = train()

#evaluate model
valid_loss, _ = evaluate()

#save the best model
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'saved_weights.pt')

# append training and validation loss
train_losses.append(train_loss)
valid_losses.append(valid_loss)

print(f'\nTraining Loss: {train_loss:.3f}')
print(f'Validation Loss: {valid_loss:.3f}')
我收到的回溯是:
Epoch 1 / 10
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-105-c5138ddf6b25> in <module>()
12
13 #train model
---> 14 train_loss, _ = train()
15
16 #evaluate model

5 frames
<ipython-input-103-3236a6e339dd> in train()
24
25 # get model predictions for the current batch
---> 26 preds = model(sent_id, mask)
27
28 # compute the loss between actual and predicted values

/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),

<ipython-input-99-9ebdcf410f97> in forward(self, sent_id, mask)
28 _, cls_hs = self.bert(sent_id, attention_mask=mask)
29
---> 30 x = self.fc1(cls_hs)
31
32 x = self.relu(x)

/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),

/usr/local/lib/python3.7/dist-packages/torch/nn/modules/linear.py in forward(self, input)
92
93 def forward(self, input: Tensor) -> Tensor:
---> 94 return F.linear(input, self.weight, self.bias)
95
96 def extra_repr(self) -> str:

/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
1751 if has_torch_function_variadic(input, weight):
1752 return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1753 return torch._C._nn.linear(input, weight, bias)
1754
1755

TypeError: linear(): argument 'input' (position 1) must be Tensor, not str

最佳答案

我也一直在研究这个 repo。
受到此 link 上提供的答案的启发.有一个可能名为 Bert_Arch 的类继承了 nn.Module,这个类有一个名为 forward 的重写方法。在 forward 方法中,只需将参数 'return_dict=False' 添加到 self.bert() 方法调用中。像这样:

_, cls_hs = self.bert(sent_id, attention_mask=mask, return_dict=False)
这对我有用。

关于python - 类型错误 : linear(): argument 'input' (position 1) must be Tensor, 不是 str,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66846030/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com