- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我遇到这样一种情况,输入是图像和一组 (3) 个数字字段,输出是图像 mask 。我不确定如何在 KERAS 中做到这一点......
我的架构有点像附件。我知道 CNN 和 Dense 架构,只是不确定如何在相应的网络中传递输入并进行连接操作。另外,关于 berrer 架构的建议会很棒!!!!!!
最佳答案
我可以建议尝试使用 U-net 模型来解决这个问题。通常的 U-net 表示几个 conv 和 maxpooling 层,然后是几个 conv 和上采样层:
在当前问题中,您可以在中间混淆非空间数据(图像注释):
也许从预训练的 VGG-16 开始是个好主意(见下文 vgg.load_weights(VGG_Weights_path)
)。
参见下面的代码(基于 Divam Gupta's repo ):
from keras.models import *
from keras.layers import *
def VGGUnet(n_classes, input_height=416, input_width=608, data_length=128, vgg_level=3):
assert input_height % 32 == 0
assert input_width % 32 == 0
# https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels.h5
img_input = Input(shape=(3, input_height, input_width))
data_input = Input(shape=(data_length,))
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1', data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2', data_format=IMAGE_ORDERING)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool', data_format=IMAGE_ORDERING)(x)
f1 = x
# Block 2
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1', data_format=IMAGE_ORDERING)(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2', data_format=IMAGE_ORDERING)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool', data_format=IMAGE_ORDERING)(x)
f2 = x
# Block 3
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1', data_format=IMAGE_ORDERING)(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2', data_format=IMAGE_ORDERING)(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3', data_format=IMAGE_ORDERING)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool', data_format=IMAGE_ORDERING)(x)
f3 = x
# Block 4
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1', data_format=IMAGE_ORDERING)(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2', data_format=IMAGE_ORDERING)(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3', data_format=IMAGE_ORDERING)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool', data_format=IMAGE_ORDERING)(x)
f4 = x
# Block 5
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1', data_format=IMAGE_ORDERING)(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2', data_format=IMAGE_ORDERING)(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3', data_format=IMAGE_ORDERING)(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool', data_format=IMAGE_ORDERING)(x)
f5 = x
x = Flatten(name='flatten')(x)
x = Dense(4096, activation='relu', name='fc1')(x)
x = Dense(4096, activation='relu', name='fc2')(x)
x = Dense(1000, activation='softmax', name='predictions')(x)
vgg = Model(img_input, x)
vgg.load_weights(VGG_Weights_path)
levels = [f1, f2, f3, f4, f5]
# Several dense layers for image annotation processing
data_layer = Dense(1024, activation='relu', name='data1')(data_input)
data_layer = Dense(input_height * input_width / 256, activation='relu', name='data2')(data_layer)
data_layer = Reshape((1, input_height / 16, input_width / 16))(data_layer)
# Mix image annotations here
o = (concatenate([f4, data_layer], axis=1))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING))(o)
o = (BatchNormalization())(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=1))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING))(o)
o = (BatchNormalization())(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=1))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING))(o)
o = (BatchNormalization())(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=1))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING))(o)
o = (BatchNormalization())(o)
o = Conv2D(n_classes, (3, 3), padding='same', data_format=IMAGE_ORDERING)(o)
o_shape = Model(img_input, o).output_shape
output_height = o_shape[2]
output_width = o_shape[3]
o = (Reshape((n_classes, output_height * output_width)))(o)
o = (Permute((2, 1)))(o)
o = (Activation('softmax'))(o)
model = Model([img_input, data_input], o)
model.outputWidth = output_width
model.outputHeight = output_height
return model
要训练和评估具有多个输入的 keras 模型,请为每个输入层准备单独的数组 - image_train
和 annotation_train
(保留第一个轴的顺序,即 sample 的编号)并调用它:
model.fit([image_train, annotation_train], result_segmentation_train, batch_size=..., epochs=...)
test_loss, test_acc = model.evaluate([image_test, annotation_test], result_segmentation_test)
祝你好运!
关于keras - 图像+数字数据的神经网络,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51856273/
我正在尝试学习 Knockout 并尝试创建一个照片 uploader 。我已成功将一些图像存储在数组中。现在我想回帖。在我的 knockout 码(Javascript)中,我这样做: 我在 Jav
我正在使用 php 编写脚本。我的典型问题是如何在 mysql 中添加一个有很多替代文本和图像的问题。想象一下有机化学中具有苯结构的描述。 最有效的方法是什么?据我所知,如果我有一个图像,我可以在数据
我在两个图像之间有一个按钮,我想将按钮居中到图像高度。有人可以帮帮我吗? Entrar
下面的代码示例可以在这里查看 - http://dev.touch-akl.com/celebtrations/ 我一直在尝试做的是在 Canvas 上绘制 2 个图像(发光,然后耀斑。这些图像的链接
请检查此https://jsfiddle.net/rhbwpn19/4/ 图像预览对于第一篇帖子工作正常,但对于其他帖子则不然。 我应该在这里改变什么? function readURL(input)
我对 Canvas 有疑问。我可以用单个图像绘制 Canvas ,但我不能用单独的图像绘制每个 Canvas 。- 如果数据只有一个图像,它工作正常,但数据有多个图像,它不工作你能帮帮我吗? va
我的问题很简单。如何获取 UIImage 的扩展类型?我只能将图像作为 UIImage 而不是它的名称。图像可以是静态的,也可以从手机图库甚至文件路径中获取。如果有人可以为此提供一点帮助,将不胜感激。
我有一个包含 67 个独立路径的 SVG 图像。 是否有任何库/教程可以为每个路径创建单独的光栅图像(例如 PNG),并可能根据路径 ID 命名它们? 最佳答案 谢谢大家。我最终使用了两个答案的组合。
我想将鼠标悬停在一张图片(音乐专辑)上,然后播放一张唱片,所以我希望它向右移动并旋转一点,当它悬停时我希望它恢复正常动画片。它已经可以向右移动,但我无法让它随之旋转。我喜欢让它尽可能简单,因为我不是编
Retina iOS 设备不显示@2X 图像,它显示 1X 图像。 我正在使用 Xcode 4.2.1 Build 4D502,该应用程序的目标是 iOS 5。 我创建了一个测试应用(主/细节)并添加
我正在尝试从头开始以 Angular 实现图像 slider ,并尝试复制 w3school基于图像 slider 。 下面我尝试用 Angular 实现,谁能指导我如何使用 Angular 实现?
我正在尝试获取图像的图像数据,其中 w= 图像宽度,h = 图像高度 for (int i = x; i imageData[pos]>0) //Taking data (here is the pr
我的网页最初通过在 javascript 中动态创建图像填充了大约 1000 个缩略图。由于权限问题,我迁移到 suPHP。现在不用标准 标签本身 我正在通过这个 php 脚本进行检索 $file
我正在尝试将 python opencv 图像转换为 QPixmap。 我按照指示显示Page Link我的代码附在下面 img = cv2.imread('test.png')[:,:,::1]/2
我试图在这个 Repository 中找出语义分割数据集的 NYU-v2 . 我很难理解图像标签是如何存储的。 例如,给定以下图像: 对应的标签图片为: 现在,如果我在 OpenCV 中打开标签图像,
import java.util.Random; class svg{ public static void main(String[] args){ String f="\"
我有一张 8x8 的图片。 (位图 - 可以更改) 我想做的是能够绘制一个形状,给定一个 Path 和 Paint 对象到我的 SurfaceView 上。 目前我所能做的就是用纯色填充形状。我怎样才
要在页面上显示图像,你需要使用源属性(src)。src 指 source 。源属性的值是图像的 URL 地址。 定义图像的语法是: 在浏览器无法载入图像时,替换文本属性告诉读者她们失去的信息。此
**MMEditing是基于PyTorch的图像&视频编辑开源工具箱,支持图像和视频超分辨率(super-resolution)、图像修复(inpainting)、图像抠图(matting)、
我正在尝试通过资源文件将图像插入到我的程序中,如下所示: green.png other files 当我尝试使用 QImage 或 QPixm
我是一名优秀的程序员,十分优秀!