- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
需要了解 Tensorflow 对象检测 API 的正确配置设置才能添加类并进行迁移学习
看完https://github.com/tensorflow/models/issues/6479和 Retrain Tensorflow Object detection API目前还不清楚如何使用 API 进行迁移学习。
我正在寻找将类添加到经过训练的模型的正确方法。例如,带有 Mobilenet v1 的 SSD
我看到的使用对象检测 API 的方法涉及进行以下更改:在管道配置文件中:
此外,
更改文件:"../yourlocalpath/classes.pbtxt" 仅包含:
item {
id: 1
name: 'some_new_class'
}
我用 200,000 步(18 小时)训练了 600 张图像,损失为 1.5。
我在训练数据上的准确率超过 90%,但在评估上的准确率不到 10%。这显然是过度拟合。我的第一个想法是该模型对于单个项目来说太复杂了。它只是记住了训练数据。我还注意到其他 90 件原始元素已找不到。
然后我将 num_classes 更改为 91 并简单地添加元素 {编号:91名称:'some_new_class'}到原始的 classes.pbtxt 文件?
我的结果没有太大改善 (20%)。 (这次我停止了大约 100,000 步的训练,但到那时学习曲线几乎变平了)。
对于这两种情况,我都选择不更改"from_detection_checkpoint: true" 设置。因为“从检测检查点开始通常会导致比分类检查点更快的训练工作。”引用:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/configuring_jobs.md#model-parameter-initialization
训练对象检测器检测所有对象(旧的和新的)的正确方法是什么?
我希望当我对包含已训练对象以及新对象的图像进行预测时,所有对象都会被发现。
这里是使用的配置文件。
第一个 num_classes: 1
# SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 10
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "/home/adriansr/HoodML/Datasets/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/adriansr/HoodML/Datasets/2016_USATF_Sprint_TrainingDataset/Analyze/train.record"
}
label_map_path: "/home/adriansr/HoodML/hoodbibod/training/classes.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
num_examples: 1100
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/adriansr/HoodML/Datasets/2016_USATF_Sprint_TrainingDataset/Analyze/test.record"
}
label_map_path: "/home/adriansr/HoodML/hoodbibod/training/classes.pbtxt"
shuffle: false
num_readers: 1
}
第二个 num_classes: 91
# SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
num_classes: 91
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 10
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "/home/adriansr/HoodML/Datasets/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/adriansr/HoodML/Datasets/2016_USATF_Sprint_TrainingDataset/Analyze/train.record"
}
label_map_path: "/home/adriansr/HoodML/hoodbibod/training/mscoco_complete_label_map_with_bib.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
num_examples: 1100
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/adriansr/HoodML/Datasets/2016_USATF_Sprint_TrainingDataset/Analyze/test.record"
}
label_map_path: "/home/adriansr/HoodML/hoodbibod/training/mscoco_complete_label_map_with_bib.pbtxt"
shuffle: false
num_readers: 1
}
类.pbtxt
item {
id: 1
name: 'Bib'
}
mscoco_complete_label_map_with_bib.pbtxt
item {
name: "background"
id: 0
display_name: "background"
}
item {
name: "/m/01g317"
id: 1
display_name: "person"
}
item {
name: "/m/0199g"
id: 2
display_name: "bicycle"
}
item {
name: "/m/0k4j"
id: 3
display_name: "car"
}
item {
name: "/m/04_sv"
id: 4
display_name: "motorcycle"
}
item {
name: "/m/05czz6l"
id: 5
display_name: "airplane"
}
item {
name: "/m/01bjv"
id: 6
display_name: "bus"
}
item {
name: "/m/07jdr"
id: 7
display_name: "train"
}
item {
name: "/m/07r04"
id: 8
display_name: "truck"
}
item {
name: "/m/019jd"
id: 9
display_name: "boat"
}
item {
name: "/m/015qff"
id: 10
display_name: "traffic light"
}
item {
name: "/m/01pns0"
id: 11
display_name: "fire hydrant"
}
item {
name: "12"
id: 12
display_name: "12"
}
item {
name: "/m/02pv19"
id: 13
display_name: "stop sign"
}
item {
name: "/m/015qbp"
id: 14
display_name: "parking meter"
}
item {
name: "/m/0cvnqh"
id: 15
display_name: "bench"
}
item {
name: "/m/015p6"
id: 16
display_name: "bird"
}
item {
name: "/m/01yrx"
id: 17
display_name: "cat"
}
item {
name: "/m/0bt9lr"
id: 18
display_name: "dog"
}
item {
name: "/m/03k3r"
id: 19
display_name: "horse"
}
item {
name: "/m/07bgp"
id: 20
display_name: "sheep"
}
item {
name: "/m/01xq0k1"
id: 21
display_name: "cow"
}
item {
name: "/m/0bwd_0j"
id: 22
display_name: "elephant"
}
item {
name: "/m/01dws"
id: 23
display_name: "bear"
}
item {
name: "/m/0898b"
id: 24
display_name: "zebra"
}
item {
name: "/m/03bk1"
id: 25
display_name: "giraffe"
}
item {
name: "26"
id: 26
display_name: "26"
}
item {
name: "/m/01940j"
id: 27
display_name: "backpack"
}
item {
name: "/m/0hnnb"
id: 28
display_name: "umbrella"
}
item {
name: "29"
id: 29
display_name: "29"
}
item {
name: "30"
id: 30
display_name: "30"
}
item {
name: "/m/080hkjn"
id: 31
display_name: "handbag"
}
item {
name: "/m/01rkbr"
id: 32
display_name: "tie"
}
item {
name: "/m/01s55n"
id: 33
display_name: "suitcase"
}
item {
name: "/m/02wmf"
id: 34
display_name: "frisbee"
}
item {
name: "/m/071p9"
id: 35
display_name: "skis"
}
item {
name: "/m/06__v"
id: 36
display_name: "snowboard"
}
item {
name: "/m/018xm"
id: 37
display_name: "sports ball"
}
item {
name: "/m/02zt3"
id: 38
display_name: "kite"
}
item {
name: "/m/03g8mr"
id: 39
display_name: "baseball bat"
}
item {
name: "/m/03grzl"
id: 40
display_name: "baseball glove"
}
item {
name: "/m/06_fw"
id: 41
display_name: "skateboard"
}
item {
name: "/m/019w40"
id: 42
display_name: "surfboard"
}
item {
name: "/m/0dv9c"
id: 43
display_name: "tennis racket"
}
item {
name: "/m/04dr76w"
id: 44
display_name: "bottle"
}
item {
name: "45"
id: 45
display_name: "45"
}
item {
name: "/m/09tvcd"
id: 46
display_name: "wine glass"
}
item {
name: "/m/08gqpm"
id: 47
display_name: "cup"
}
item {
name: "/m/0dt3t"
id: 48
display_name: "fork"
}
item {
name: "/m/04ctx"
id: 49
display_name: "knife"
}
item {
name: "/m/0cmx8"
id: 50
display_name: "spoon"
}
item {
name: "/m/04kkgm"
id: 51
display_name: "bowl"
}
item {
name: "/m/09qck"
id: 52
display_name: "banana"
}
item {
name: "/m/014j1m"
id: 53
display_name: "apple"
}
item {
name: "/m/0l515"
id: 54
display_name: "sandwich"
}
item {
name: "/m/0cyhj_"
id: 55
display_name: "orange"
}
item {
name: "/m/0hkxq"
id: 56
display_name: "broccoli"
}
item {
name: "/m/0fj52s"
id: 57
display_name: "carrot"
}
item {
name: "/m/01b9xk"
id: 58
display_name: "hot dog"
}
item {
name: "/m/0663v"
id: 59
display_name: "pizza"
}
item {
name: "/m/0jy4k"
id: 60
display_name: "donut"
}
item {
name: "/m/0fszt"
id: 61
display_name: "cake"
}
item {
name: "/m/01mzpv"
id: 62
display_name: "chair"
}
item {
name: "/m/02crq1"
id: 63
display_name: "couch"
}
item {
name: "/m/03fp41"
id: 64
display_name: "potted plant"
}
item {
name: "/m/03ssj5"
id: 65
display_name: "bed"
}
item {
name: "66"
id: 66
display_name: "66"
}
item {
name: "/m/04bcr3"
id: 67
display_name: "dining table"
}
item {
name: "68"
id: 68
display_name: "68"
}
item {
name: "69"
id: 69
display_name: "69"
}
item {
name: "/m/09g1w"
id: 70
display_name: "toilet"
}
item {
name: "71"
id: 71
display_name: "71"
}
item {
name: "/m/07c52"
id: 72
display_name: "tv"
}
item {
name: "/m/01c648"
id: 73
display_name: "laptop"
}
item {
name: "/m/020lf"
id: 74
display_name: "mouse"
}
item {
name: "/m/0qjjc"
id: 75
display_name: "remote"
}
item {
name: "/m/01m2v"
id: 76
display_name: "keyboard"
}
item {
name: "/m/050k8"
id: 77
display_name: "cell phone"
}
item {
name: "/m/0fx9l"
id: 78
display_name: "microwave"
}
item {
name: "/m/029bxz"
id: 79
display_name: "oven"
}
item {
name: "/m/01k6s3"
id: 80
display_name: "toaster"
}
item {
name: "/m/0130jx"
id: 81
display_name: "sink"
}
item {
name: "/m/040b_t"
id: 82
display_name: "refrigerator"
}
item {
name: "83"
id: 83
display_name: "83"
}
item {
name: "/m/0bt_c3"
id: 84
display_name: "book"
}
item {
name: "/m/01x3z"
id: 85
display_name: "clock"
}
item {
name: "/m/02s195"
id: 86
display_name: "vase"
}
item {
name: "/m/01lsmm"
id: 87
display_name: "scissors"
}
item {
name: "/m/0kmg4"
id: 88
display_name: "teddy bear"
}
item {
name: "/m/03wvsk"
id: 89
display_name: "hair drier"
}
item {
name: "/m/012xff"
id: 90
display_name: "toothbrush"
}
item {
name: "/m/bib"
id: 91
display_name: "bib"
}
最佳答案
晚了 2 年,但...从根本上说,您无法在新类别上训练您的网络并且不影响先前训练类别的识别准确性。通过对新对象的数据集进行训练,并使用仅包含该新对象的标签图,模型将仅优化以检测新对象,因为您正在更改启用旧对象检测的权重。您可以尝试将您的数据集与模型最初训练的数据集合并,并在新的合并集上进行训练。即便如此,这也是不够的,除非您计划以某种方式确保新对象出现在图像中,同时旧对象也被标记(也许某种合成数据生成过程可能有用)。
关于tensorflow - Tensorflow 对象检测 API 的正确配置设置以添加类或进行迁移学习,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56295151/
我创建了一个用户可以添加测试的字段。这一切运行顺利我只希望当用户点击(添加另一个测试)然后上一个(添加另一个测试)删除并且这个显示在新字段中。 所有运行良好的唯一问题是点击(添加另一个字段)之前添加另
String[] option = {"Adlawan", "Angeles", "Arreza", "Benenoso", "Bermas", "Brebant
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎不是关于 a specific programming problem, a softwar
我正在努力将 jQuery 滚动功能添加到 nav-tab (Bootstrap 3)。我希望用户能够选择他们想要的选项卡,并在选项卡内容中有一个可以平滑滚动到 anchor 的链接。这是我的代码,可
我正在尝试在用户登录后再添加 2 个 ui 选项卡。首先,我尝试做一个之后。 $('#slideshow').tabs('remove', '4'); $("#slideshow ul li:last
我有一个包含选择元素的表单,我想通过选择添加和删除其中一些元素。这是html代码(这里也有jsfiddle http://jsfiddle.net/txhajy2w/):
正在写这个: view.backgroundColor = UIColor.white.withAlphaComponent(0.9) 等同于: view.backgroundColor = UICo
好的,如果其中有任何信息,我想将这些列添加到一起。所以说我有 账户 1 2 3 . 有 4 个帐户空间,但只有 3 个帐户。我如何创建 java 脚本来添加它。 最佳答案 Live Example H
我想知道是否有一种有效的预制算法来确定一组数字的和/差是否可以等于不同的数字。示例: 5、8、10、2,使用 + 或 - 等于 9。5 - 8 = -3 + 10 = 7 + 2 = 9 如果有一个预
我似乎有一个卡住的 git repo。它卡在所有基本的添加、提交命令上,git push 返回所有内容为最新的。 从其他帖子我已经完成了 git gc 和 git fsck/ 我认为基本的调试步骤是
我的 Oracle SQL 查询如下- Q1- select hca.account_number, hca.attribute3, SUM(rcl.extended_amou
我正在阅读 http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingG
我正在尝试添加一个“加载更多”按钮并限制下面的结果,这样投资组合页面中就不会同时加载 1000 个内容,如下所示:http://typesetdesign.com/portfolio/ 我对 PHP
我遇到这个问题,我添加了 8 个文本框,它工作正常,但是当我添加更多文本框(如 16 个文本框)时,它不会添加最后一个文本框。有人遇到过这个问题吗?提前致谢。 Live Link: JAVASCRIP
add/remove clone first row default not delete 添加/删除克隆第一行默认不删除&并获取正确的SrNo(例如:添加3行并在看到问题后删除SrNo.2)
我编码this ,但删除按钮不起作用。我在控制台中没有任何错误.. var counter = 0; var dataList = document.getElementById('materi
我有一个类似数组的对象: [1:数组[10]、2:数组[2]、3:数组[2]、4:数组[2]、5:数组[3]、6:数组[1]] 我正在尝试删除前两个元素,执行一些操作,然后将它们再次插入到同一位置。
使用的 Delphi 版本:2007 你好, 我有一个 Tecord 数组 TInfo = Record Name : String; Price : Integer; end; var Info
我使用了基本的 gridster 代码,然后我声明了通过按钮添加和删除小部件的函数它工作正常但是当我将调整大小功能添加到上面的代码中时,它都不起作用(我的意思是调整大小,添加和删除小部件) 我的js代
title 323 323 323 title 323 323 323 title 323 323 323 JS $(document).keydown(function(e){
我是一名优秀的程序员,十分优秀!