- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
对于 nltk 它会是这样的:
def symm_similarity(textA,textB):
textA = set(word_tokenize(textA))
textB = set(word_tokenize(textB))
intersection = len(textA.intersection(textB))
difference = len(textA.symmetric_difference(textB))
return intersection/float(intersection+difference)
由于 spacy 更快,我尝试在 spacy 中执行此操作,但 token 对象似乎没有为此提供快速解决方案。有什么想法吗?
谢谢大家。
最佳答案
您的函数获取共享词类型的百分比,而不是标记。你正在使用这组词,但对它们的计数不敏感。
如果你想要标记的计数,我希望下面的速度非常快,只要你加载了词汇文件(如果你安装了数据,默认情况下会加载):
from spacy.attrs import ORTH
def symm_similarity_types(nlp, textA,textB):
docA = nlp.make_doc(textA)
docB = nlp.make_doc(textB)
countsA = Counter(docA.count_by(ORTH))
countsB = Counter(docB.count_by(ORTH)
diff = sum(abs(val) for val in (countsA - countsB).values())
return diff / (len(docA) + len(docB))
如果您想计算与上面的代码完全相同的东西,这里是 spaCy 等价物。 Doc
对象允许您迭代 Token
对象。然后,您应该根据 token.orth
属性进行计数,该属性是字符串的整数 ID。我预计使用整数会比使用字符串集快一些:
def symm_similarity_types(nlp, textA,textB):
docA = set(w.orth for w in nlp(textA)
docB = set(w.orth for w in nlp(textB)
intersection = len(textA.intersection(textB))
difference = len(textA.symmetric_difference(textB))
return intersection/float(intersection+difference)
这应该比 NLTK 版本更有效一些,因为您使用的是整数集,而不是字符串。
如果您真的很关心效率,通常只在 Cython 中工作更方便,而不是试图猜测 Python 在做什么。这是基本循环:
# cython: infer_types=True
for token in doc.c[:doc.length]
orth = token.lex.orth
doc.c
是一个 TokenC*
,因此您将迭代连续内存并取消引用单个指针(token.lex
是一个 const LexemeC*
)
关于nlp - 使用 spacy 查找两个文档共享的标记百分比,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41470276/
我有一段文本和索引条目,其中一些指示出现在文本中的重要多词表达 (MWE)(例如生物学文本的“海绵骨”)。我想使用这些条目在 spaCy 中构建自定义匹配器,以便我可以识别文本中出现的 MWE。一个附
我想在 Spacy 中使用德语 lemmatizer,但我对结果感到非常惊讶: import spacy nlp = spacy.load("de_dep_news_trf") [token.lemm
要将我的句子拆分为标记,我正在执行以下操作,这很慢 import spacy nlp = spacy.load("en_core_web_lg") text = "This is a test.
我已经使用空间很长一段时间了,我真的很喜欢这种置换 有没有一种方法可以让我们在网页中从我的数据集中提供多个文本,如一个小箭头,以重定向到下一条记录并标记实体。 我使用的代码如下。 def valida
我有变量 trainData它具有以下简化格式。 [ ('Paragraph_A', {"entities": [(15, 26, 'DiseaseClass'), (443, 449, 'Disea
我正在尝试测试在另一台计算机上运行的模型,但是当我尝试将其导入我的笔记本时,出现以下错误:ModuleNotFoundError:没有名为“spacy.pipeline.pipes”的模块; 'spa
我正在尝试测试在另一台计算机上运行的模型,但是当我尝试将其导入我的笔记本时,出现以下错误:ModuleNotFoundError:没有名为“spacy.pipeline.pipes”的模块; 'spa
当处理数百万文档并将它们保存为空间文档以供以后使用(更多处理、可视化、提取特征)时,一种明显的扩展解决方案是并行/分布式处理。这意味着每个并行进程都将拥有自己的 Vocab,这些 Vocab 可能会随
我正在使用 Spacy 大型模型,但它错误地使用与我的领域无关的类别标记实体,例如“艺术作品”可能导致它无法识别本应属于组织的内容。 是否可以限制 NER 仅返回人员、位置和组织? 最佳答案 简答:
我正在像这样使用 SpaCy 创建一个短语匹配器: import spacy from spacy.matcher import PhraseMatcher nlp = spacy.load("en"
我正在尝试使用 spaCy Matcher 工作获得以下简单示例: import en_core_web_sm from spacy.matcher import Matcher nlp = en_c
它没有出现在 pip list zeke$ pip list | grep spacy spacy (1.7.3) 如何获取模型名称? 我试过了,还是不行 echo "spaCy model:" py
我在 "Training an additional entity type" 中有新 NER 类型的训练数据spaCy 文档的部分。 TRAIN_DATA = [ ("Horses are
给定一个 token ,它是具有多个 token 的命名实体的一部分,是否有直接方法来获取该实体的跨度? 例如,考虑这个有两个词命名实体的句子: >>> doc = nlp("This year wa
如何限制 Spacy 使用的 CPU 数量? 我想从大量句子中提取词性和命名实体。由于 RAM 的限制,我首先使用 Python NLTK 将我的文档解析为句子。然后我遍历我的句子并使用 nlp.pi
显然 for doc in nlp.pipe(sequence) 比运行 for el in order: doc = nlp(el) .. 我遇到的问题是我的序列实际上是一个元组序列,其中包含用于将
显然 for doc in nlp.pipe(sequence) 比运行 for el in order: doc = nlp(el) .. 我遇到的问题是我的序列实际上是一个元组序列,其中包含用于将
我已经下载了 spaCy,但每次尝试 nlp = spacy.load("en_core_web_lg") 命令时,我都会收到此错误: OSError:[E050] 找不到模型“en_core_web
到目前为止,我一直在使用 spacy 2.3.1,并为我的自定义语言类(class)训练并保存了几个管道。但是现在使用 spacy 3.0 和 spacy.load('model-path') 我遇到
我安装了 spacy 使用 python3 install spacy 并使用下载了两个英文模型 python3 -m spacy download en 和 python3 -m spacy dow
我是一名优秀的程序员,十分优秀!