- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在预测 7 个目标,这是一个值的比率,因此对于每个样本,所有预测值的总和应该为 1。除了在输出中使用 softmax
(这看起来显然不正确)之外,我只是想不出其他方法来将所有预测输出的总和限制为 =1..
感谢您提出任何建议。
input_x = Input(shape=(input_size,))
output = Dense(512, activation=PReLU())(input_x)
output = Dropout(0.5)(output)
output = Dense(512, activation=PReLU())(output)
output = Dropout(0.5)(output)
output = Dense(16, activation=PReLU())(output)
output = Dropout(0.3)(output)
outputs = Dense(output_size, activation='softmax')(output)
#outputs = [Dense(1, activation=PReLU())(output) for i in range(output_size)] #multioutput nn
nn = Model(inputs=input_x, outputs=outputs)
es = EarlyStopping(monitor='val_loss',min_delta=0,patience=10,verbose=1, mode='auto')
opt=Adam(lr=0.001, decay=1-0.995)
nn.compile(loss='mean_absolute_error', optimizer=opt)
history = nn.fit(X, Y, validation_data = (X_t, Y_t), epochs=100, verbose=1, callbacks=[es])
目标示例:
所以,这是一个特征的所有比率,每行的总和 =1。
例如特征 - “总计”=100 分,A=25 分,B=25 分,所有其他 - 10 分。所以,我的 7 个目标比率将是 0.25/0.25/0.1/0.1/0.1/0.1/0.1。
我需要训练和预测这样的比率,所以将来,在知道“总计”的情况下,我们可以从预测的比率中恢复点数。
最佳答案
我想我理解你的动机,也理解为什么“softmax 不会削减它”。
这是因为 softmax 不是线性缩放的,所以:
>>> from scipy.special import softmax
>>> softmax([1, 2, 3, 4])
array([0.0320586 , 0.08714432, 0.23688282, 0.64391426])
>>> softmax([1, 2, 3, 4]) * 10
array([0.32058603, 0.87144319, 2.36882818, 6.4391426 ])
这看起来与原始数组完全不同。
不过不要轻易忽略 softmax - 它可以处理特殊情况,例如负值、零、预激活信号的零和...但是如果您希望将最终回归归一化为 1,并期望结果要成为非负数,您可以简单地将它除以总和:
input_x = Input(shape=(input_size,))
output = Dense(512, activation=PReLU())(input_x)
output = Dropout(0.5)(output)
output = Dense(512, activation=PReLU())(output)
output = Dropout(0.5)(output)
output = Dense(16, activation=PReLU())(output)
output = Dropout(0.3)(output)
outputs = Dense(output_size, activation='relu')(output)
outputs = Lambda(lambda x: x / K.sum(x))(outputs)
nn = Model(inputs=input_x, outputs=outputs)
Dense
层当然需要与 'softmax'
不同的激活(relu 甚至线性都可以)。
关于python - 限制神经网络回归中的输出总和 (Keras),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60003673/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!