gpt4 book ai didi

tensorflow-federated - 异步 - FL 模型

转载 作者:行者123 更新时间:2023-12-04 15:31:35 25 4
gpt4 key购买 nike

如何使用TFF框架进行异步模型训练?

我回顾了迭代训练过程循环,但是我不确定如何知道收到了哪些客户模型。

最佳答案

很有可能在 TFF 中模拟类似于“异步 FL”的东西。一种思考方式是从概念上将模拟时间挂钟时间分离。

每轮对不同数量的客户端进行抽样(而不是通常采用的统一 K 客户端),或许可以根据客户端预期训练的时间对客户端进行加权,从而模拟异步佛罗里达州。可以先只处理一部分选定的客户,研究人员可以根据需要自由分割数据/计算。

Python 风格的伪代码演示了这两种技术,不同的客户端采样和延迟梯度应用:

state = fed_avg_iter_proc.initialize()
for round_num in range(NUM_ROUNDS):
# Here we conceptualize a "round" as a block of time, rather than a synchronous
# round. We have a function that determines which clients will "finish" within
# our configured block of time. This might even return only a single client.
participants = get_next_clients(time_window=timedelta(minutes=30))
num_participants = len(participants)

# Here we only process the first half, and then updated the global model.
state2, metrics = fed_avg_iter_proc.next(state, participants[:num_participants/2])

# Now process the second half of the selected clients.
# Note: this is now apply the 'pseudo-gradient' that was computed on clients
# (the difference between the original `state` and their local training result),
# to the model that has already taken one step (`state2`). This possibly has
# undesirable effects on the optimisation process, or may be improved with
# techniques that handle "stale" gradients.
state3, metrics = fed_avg_iter_proc.next(state2, participants[num_participants/2:])

# Finally update the state for the next for-loop of the simulation.
state = state3

关于tensorflow-federated - 异步 - FL 模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61152605/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com