- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 astropy.modeling 包将高斯拟合到一组数据点,但我得到的只是一条平线。见下文:
这是我的代码:
%pylab inline
from astropy.modeling import models,fitting
from astropy import modeling
#Fitting a gaussian for the absorption lines
wavelength= linspace(galaxy1_wavelength_extracted_1.min(),galaxy1_wavelength_extracted_1.max(),200)
g_init = models.Gaussian1D(amplitude=1., mean=5000, stddev=1.)
fit_g = fitting.LevMarLSQFitter()
g = fit_g(g_init, galaxy1_wavelength_extracted_1, galaxy1_flux_extracted_1)
#Plotting
plot(galaxy1_wavelength_extracted_1,galaxy1_flux_extracted_1,".k")
plot(wavelength, g(wavelength))
xlabel("Wavelength ($\\AA$)")
ylabel("Flux (counts)")
我做错了什么或遗漏了什么?
最佳答案
我制作了一些类似于您的假数据,并尝试在其上运行您的代码并获得了类似的结果。我认为问题在于,如果您不将模型的初始参数调整到至少与原始模型相似,否则无论执行多少轮拟合,拟合器都无法收敛。
如果我要拟合高斯分布,我喜欢给初始模型一些初始参数,这些初始参数基于计算上的“目测”,就像这样(在这里我将您的真实数据的通量和波长命名为 orig_flux
和 orig_wavelength
分别):
>>> an_amplitude = orig_flux.min()
>>> an_mean = orig_wavelength[orig_flux.argmin()]
>>> an_stddev = np.sqrt(np.sum((orig_wavelength - an_mean)**2) / (len(orig_wavelength) - 1))
>>> print(f'mean: {an_mean}, stddev: {an_stddev}, amplitude: {an_amplitude}')
mean: 5737.979797979798, stddev: 42.768052162734605, amplitude: 84.73925092448636
对于标准偏差,我使用了 unbiased standard deviation estimate .
在我的假数据上绘制此图表明,如果我也手动观察数据,这些是我可能会选择的合理值:
>>> plt.plot(orig_wavelength, orig_flux, '.k', zorder=1)
>>> plt.scatter(an_mean, an_amplitude, color='red', s=100, zorder=2)
>>> plt.vlines([an_mean - an_stddev, an_mean + an_stddev], orig_flux.min(), orig_flux.max(),
... linestyles='dashed', colors='gg', zorder=2)
我过去想添加到 astropy.modeling
的一个功能是可选方法,可以附加到某些模型以根据某些数据对其参数进行合理估计。所以对于 Gaussians 这样的方法会返回很像我刚刚在上面计算的结果。不过,我不知道这是否曾经实现过。
同样值得注意的是,您的高斯分布将被反转(具有负振幅)并且它在通量轴上位移了大约 120 个点,因此我添加了一个 Const1D
。到我的模型来解释这一点,并从振幅中减去位移:
>>> an_disp = orig_flux.max()
>>> g_init = (
... models.Const1D(an_disp) +
... models.Gaussian1D(amplitude=(an_amplitude - an_disp), mean=an_mean, stddev=an_stddev)
... )
>>> fit_g = fitting.LevMarLSQFitter()
>>> g = fit_g(g_init, orig_wavelength, orig_flux)
这导致以下拟合看起来已经好多了:
>>> plt.plot(orig_wavelength, orig_flux, '.k')
>>> plt.plot(orig_wavelength, g(orig_wavelength), 'r-')
我不是建模或统计方面的专家,所以知识渊博的人可能会对此有所改进。我添加了一个笔记本,其中包含我对问题的完整分析,包括我如何生成示例数据 here .
关于python - 如何使用 Astropy 拟合高斯分布,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61295585/
gnuplot 中拟合函数的正确方法是什么 f(x)有下一个表格吗? f(x) = A*exp(x - B*f(x)) 我尝试使用以下方法将其拟合为任何其他函数: fit f(x) "data.txt
(1)首先要建立数据集 ? 1
测量显示一个信号,其形式类似于具有偏移量和因子的平方根函数。如何找到系数并在一个图中绘制原始数据和拟合曲线? require(ggplot2) require(nlmrt) # may be thi
我想将以下函数拟合到我的数据中: f(x) = Offset+Amplitudesin(FrequencyT+Phase), 或根据 Wikipedia : f(x) = C+alphasin(ome
我正在尝试使用与此工具相同的方法在 C# 中拟合 Akima 样条曲线:https://www.mycurvefit.com/share/4ab90a5f-af5e-435e-9ce4-652c95c
问题:开放层适合 map ,只有在添加特征之后(视觉),我该如何避免这种情况? 我在做这个 第 1 步 - 创建特征 var feature = new ol.Feature({...}); 第 2
我有一个数据变量,其中包含以下内容: [Object { score="2.8", word="Blue"}, Object { score="2.8", word="Red"}, Objec
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我想用洛伦兹函数拟合一些数据,但我发现当我使用不同数量级的参数时拟合会出现问题。 这是我的洛伦兹函数: function [ value ] = lorentz( x,x0,gamma,amp )
我有一些数据,我希望对其进行建模,以便能够在与数据相同的范围内获得相对准确的值。 为此,我使用 polyfit 来拟合 6 阶多项式,由于我的 x 轴值,它建议我将其居中并缩放以获得更准确的拟合。 但
我一直在寻找一种方法来使数据符合 beta 二项分布并估计 alpha 和 beta,类似于 VGAM 库中的 vglm 包的方式。我一直无法找到如何在 python 中执行此操作。有一个 scipy
我将 scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) 函数与
在过去的几天里,我一直在尝试使用 python 绘制圆形数据,方法是构建一个范围从 0 到 2pi 的圆形直方图并拟合 Von Mises 分布。我真正想要实现的是: 具有拟合 Von-Mises 分
我有一个简单的循环,它在每次迭代中都会创建一个 LSTM(具有相同的参数)并将其拟合到相同的数据。问题是迭代过程中需要越来越多的时间。 batch_size = 10 optimizer = opti
我有一个 Python 系列,我想为其直方图拟合密度。问题:是否有一种巧妙的方法可以使用 np.histogram() 中的值来实现此结果? (请参阅下面的更新) 我目前的问题是,我执行的 kde 拟
我有一个简单的 keras 模型(正常套索线性模型),其中输入被移动到单个“神经元”Dense(1, kernel_regularizer=l1(fdr))(input_layer) 但是权重从这个模
我正在尝试解决 Boston Dataset 上的回归问题在random forest regressor的帮助下.我用的是GridSearchCV用于选择最佳超参数。 问题一 我是否应该将 Grid
使用以下函数,可以在输入点 P 上拟合三次样条: def plotCurve(P): pts = np.vstack([P, P[0]]) x, y = pts.T i = np.aran
我有 python 代码可以生成数字 x、y 和 z 的三元组列表。我想使用 scipy curve_fit 来拟合 z= f(x,y)。这是一些无效的代码 A = [(19,20,24), (10,
我正在尝试从 this answer 中复制代码,但是我在这样做时遇到了问题。我正在使用包 VGAM 中的gumbel 发行版和 fitdistrplus . 做的时候出现问题: fit = fi
我是一名优秀的程序员,十分优秀!