- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我现在正在研究 R 中的 copula,我想知道如何在 R 中找到联合累积分布?
D = c(1,3,2,2,8,2,1,3,1,1,3,3,1,1,2,1,2,1,1,3,4,1,1,3,1,1,2,1,3,7,1,4,6,1,2,1,1,3,1,2,2,3,4,1,1,1,1,2,2,12,1,1,2,1,1,1,3,4)
S = c(1.42,5.15,2.52,2.29,12.36,2.82,1.49,3.53,1.17,1.03,4.03,5.26,1.65,1.41,3.75,1.09,3.44,1.36,1.19,4.76,5.58,1.23,2.29,7.71,1.12,1.26,2.78,1.13,3.87,15.43,1.19,4.95,7.69,1.17,3.27,1.44,1.05,3.94,1.58,2.29,2.73,3.75,6.80,1.16,1.01,1.00,1.02,2.32,2.86,22.90,1.42,1.10,2.78,1.23,1.61,1.33,3.53,10.44)
library(fitdistrplus)
fg_d <- fitdist(data = Dur, distr = "gamma", method = "mle")
fg_s <- fitdist(data = Sev, distr = "gamma", method = "mle")
VineCopula
选择 copula 族。包装:
mydata <- cbind(D=D, S=S)
u1 <- pobs(mydata[,1])
u2 <- pobs(mydata[,2])
fitCopula <- BiCopSelect(u1, u2, familyset=NA)
summary(fitCopula)
library(copula)
cop_model <- surClaytonCopula(param = 5.79)
and
S<=2) .我想知道如何使用包
copula
在 R 中执行此操作?
or
S<=2)?谢谢你的帮助。
最佳答案
这是仅使用基础 R 和 copula 包的答案:
pgamma(3, 2.20, 0.98) = 0.7495596
pgamma(2, 1.56, 0.45) = 0.3631978
library(copula)
D_shape <- 2.20
D_rate <- 0.98
S_shape <- 1.56
S_rate <- 0.45
surv_clay <- rotCopula(claytonCopula(5.79))
pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
1 - pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
pgamma(3, D_shape, D_rate) +
pgamma(2, S_shape, S_rate) -
pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
VineCopula::surClaytonCopula(5.79)
对应于 copula::rotCopula(copula::claytonCopula(5.79))
从阅读 copula 手册 library(fitdistrplus)
library(copula)
library(VineCopula)
D = c(1,3,2,2,8,2,1,3,1,1,3,3,1,1,2,1,2,1,1,3,4,1,1,3,1,1,2,1,3,7,1,4,6,1,2,1,1,3,1,2,2,3,4,1,1,1,1,2,2,12,1,1,2,1,1,1,3,4)
S = c(1.42,5.15,2.52,2.29,12.36,2.82,1.49,3.53,1.17,1.03,4.03,5.26,1.65,1.41,3.75,1.09,3.44,1.36,1.19,4.76,5.58,1.23,2.29,7.71,1.12,1.26,2.78,1.13,3.87,15.43,1.19,4.95,7.69,1.17,3.27,1.44,1.05,3.94,1.58,2.29,2.73,3.75,6.80,1.16,1.01,1.00,1.02,2.32,2.86,22.90,1.42,1.10,2.78,1.23,1.61,1.33,3.53,10.44)
(fg_d <- fitdist(data = D, distr = "gamma", method = "mle"))
(fg_s <- fitdist(data = S, distr = "gamma", method = "mle"))
mydata <- cbind(D=D, S=S)
u1 <- pobs(mydata[,1])
u2 <- pobs(mydata[,2])
fitCopula <- BiCopSelect(u1, u2, familyset=NA)
summary(fitCopula)
D_shape <- fg_d$estimate[1]
D_rate <- fg_d$estimate[2]
S_shape <- fg_s$estimate[1]
S_rate <- fg_s$estimate[2]
copula_dist <- mvdc(copula=rotCopula(claytonCopula(5.79)), margins=c("gamma","gamma"),
paramMargins=list(list(shape=D_shape, rate=D_rate),
list(shape=S_shape, rate=S_rate)))
sim <- rMvdc(n = 1e5,
copula_dist)
plot(sim, col="red")
points(D,S, col="black")
legend('bottomright',c('Observed','Simulated'),col=c('black','red'),pch=21)
## F_D(d) for d=3
mean(sim[,1] <=3) ## simulated
pgamma(3, D_shape, D_rate) ## theory
## F_S(s) for s=2
mean(sim[,2] <=2) ## simulated
pgamma(2, S_shape, S_rate) ## theory
## C(F_D(d) for d=3 AND F_S(s) for s=2)
## simulated value:
mean(sim[,1] <=3 & sim[,2] <=2)
## with copula:
surv_clay <- rotCopula(claytonCopula(5.79))
pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
## P(D>=3 or S>=2)
## simulated
mean(sim[,1] >= 3 | sim[,2] >=2)
## with copula:
1-pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
## In case you want:
## P(D<=3 or S<=2) = P(D<=3) + P(S<=2) - P(D<=3,S<=2)
## simulated:
mean(sim[,1] <= 3 | sim[,2] <= 2)
## theory with copula:
pgamma(3, D_shape, D_rate) + pgamma(2, S_shape, S_rate) - pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
> (fg_d <- fitdist(data = D, distr = "gamma", method = "mle"))
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters:
estimate Std. Error
shape 2.2082572 0.3831383
rate 0.9775783 0.1903410
> (fg_s <- fitdist(data = S, distr = "gamma", method = "mle"))
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters:
estimate Std. Error
shape 1.5628338 0.26500235
rate 0.4494518 0.08964724
>
> mydata <- cbind(D=D, S=S)
> u1 <- pobs(mydata[,1])
> u2 <- pobs(mydata[,2])
> fitCopula <- BiCopSelect(u1, u2, familyset=NA)
Warning message:
In cor(x[(x[, 1] < 0) & (x[, 2] < 0), ]) : the standard deviation is zero
> summary(fitCopula)
Family
------
No: 13
Name: Survival Clayton
Parameter(s)
------------
par: 5.79
Dependence measures
-------------------
Kendall's tau: 0.74 (empirical = 0.82, p value < 0.01)
Upper TD: 0.89
Lower TD: 0
Fit statistics
--------------
logLik: 57.68
AIC: -113.37
BIC: -111.31
>
> D_shape <- fg_d$estimate[1]
> D_rate <- fg_d$estimate[2]
> S_shape <- fg_s$estimate[1]
> S_rate <- fg_s$estimate[2]
>
> copula_dist <- mvdc(copula=rotCopula(claytonCopula(5.79)), margins=c("gamma","gamma"),
+ paramMargins=list(list(shape=D_shape, rate=D_rate),
+ list(shape=S_shape, rate=S_rate)))
>
> sim <- rMvdc(n = 1e5,
+ copula_dist)
>
> plot(sim, col="red")
> points(D,S, col="black")
> legend('bottomright',c('Observed','Simulated'),col=c('black','red'),pch=21)
> ## F_D(d) for d=3
> mean(sim[,1] <=3) ## simulated
[1] 0.74759
> pgamma(3, D_shape, D_rate) ## theory
[1] 0.746482
>
> ## F_S(s) for s=2
> mean(sim[,2] <=2) ## simulated
[1] 0.36233
> pgamma(2, S_shape, S_rate) ## theory
[1] 0.3617122
>
> ## C(F_D(d) for d=3 AND F_S(s) for s=2)
> ## simulated value:
> mean(sim[,1] <=3 & sim[,2] <=2)
[1] 0.362
> ## with copula:
> surv_clay <- rotCopula(claytonCopula(5.79))
> pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
[1] 0.3615195
>
> ## P(D>=3 or S>=2)
> ## simulated
> mean(sim[,1] >= 3 | sim[,2] >=2)
[1] 0.638
> ## with copula:
> 1-pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
[1] 0.6384805
> ## In case you want:
> ## P(D<=3 or S<=2) = P(D<=3) + P(S<=2) - P(D<=3,S<=2)
> ## simulated:
> mean(sim[,1] <= 3 | sim[,2] <= 2)
[1] 0.74792
> ## theory with copula:
> pgamma(3, D_shape, D_rate) + pgamma(2, S_shape, S_rate) - pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
[1] 0.7466747
关于r - 如何从 R 中的 2-D copula 中找到联合累积分布函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54978168/
尝试使用带有 Beta 边际的内置 copula 分布(Clayton、Frank、Gumbel)为两个相关随机变量之和的分位数创建一个表。试过 NProbability和 FindRoot用各种方法
我正在从具有泊松边际的二元高斯 copula 生成概率矩阵。我不明白为什么概率不会加到 1 而是稍微多一些。这是代码: library(copula) cop<-normalCopula(param
已关闭。此问题旨在寻求有关书籍、工具、软件库等的建议。不符合Stack Overflow guidelines准则。它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,
我正在使用 R 版本 3.3.2 和包 copula 版本 0.999-15 来评估正常 copula 与我的数据的拟合。我的数据和代码是: 数据:https://www.dropbox.com/s/
我有 N 个随机变量 (X1,...,XN),每个变量分布在特定的边际(正态、对数正态、泊松...)上,我想生成 p 个联合实现的样本这些变量 Xi,考虑到这些变量与给定的 Copula 相关,使用
我在 R 中创建了一个模型,我需要使用 copula,这涉及到使用 copula 包。我在完全更新的 MacBook Pro 上使用最新版本的 R。 我可以安装 copula 包,但是当我尝试打开 l
我现在正在研究 R 中的 copula,我想知道如何在 R 中找到联合累积分布? D = c(1,3,2,2,8,2,1,3,1,1,3,3,1,1,2,1,2,1,1,3,4,1,1,3,1,1,2
我是一名优秀的程序员,十分优秀!