gpt4 book ai didi

python - 在推理时删除 Keras 模型中的辅助分支

转载 作者:行者123 更新时间:2023-12-04 15:28:02 24 4
gpt4 key购买 nike

我正在尝试实现一种预测算法,该算法结合了来自 this paper 的 LSTM 和 CNN 模型。 .本质上,该论文提出了一个具有三个分支的模型:CNN 分支、LSTM 分支和将两者结合的合并分支。前两个分支仅在训练期间出现,以防止过度拟合并确保最终模型针对 CNN 和 LSTM 特征进行训练。这是论文中的图表(总损失函数中的 alpha、beta 和 gamma 只是这些特定损失的权重。) lstm-cnn model structure据我了解,这些类似于 ResNet 和 Inception 模型中的辅助分支,以确保每一层都为模型输出做出贡献。我相应地实现了这个:

def construct_lstm_cnn(look_forward, look_back=30):
cnn = construct_cnn(look_forward, fc=False)
cnn_flatten = Flatten()(cnn.output)
lstm = construct_lstm(look_forward, look_back, 2, fc=False)

#Merged layer (the main branch that will be making prediction after training)
cnn_lstm = concatenate([cnn_flatten, lstm.output])
fc_merged = Dense(500, activation='relu')(cnn_lstm)
drop_merged = Dropout(0.5)(fc_merged)
fc2_merged = Dense(100, activation='relu')(drop_merged)
drop2_merged = Dropout(0.5)(fc2_merged)
fc3_merged = Dense(25 , activation='relu')(drop2_merged)
drop3_merged = Dropout(0.5)(fc3_merged)
pred_merged = Dense(look_forward, activation='linear')(drop3_merged)

#Auxiliary branch for cnn (want to remove at inference time)
fc_cnn = Dense(500, activation='relu')(cnn_flatten)
drop_cnn = Dropout(0.5)(fc_cnn)
fc2_cnn = Dense(100, activation='relu')(drop_cnn)
drop2_cnn = Dropout(0.5)(fc2_cnn)
fc3_cnn = Dense(25 , activation='relu')(drop2_cnn)
drop3_cnn = Dropout(0.5)(fc3_cnn)
pred_cnn_aux = Dense(look_forward, activation='linear')(drop3_cnn)

#Auxiliary branch for lstm (want to remove at inference time)
fc_lstm = Dense(500, activation='relu')(lstm.output)
drop_lstm = Dropout(0.5)(fc_lstm)
fc2_lstm = Dense(100, activation='relu')(drop_lstm)
drop2_lstm = Dropout(0.5)(fc2_lstm)
fc3_lstm = Dense(25 , activation='relu')(drop2_lstm)
drop3_lstm = Dropout(0.5)(fc3_lstm)
pred_lstm_aux = Dense(look_forward, activation='linear')(drop3_lstm)

#Final model with three branches
model = Model(inputs=[cnn.input, lstm.input], outputs=[pred_merged, pred_cnn_aux, pred_lstm_aux], name="lstm-cnn")
return model

但是,我似乎无法在 Keras 中找到删除列出的辅助分支的方法。有没有一种方法可以删除在推理期间无用的层?

最佳答案

我给你一个简单的例子

这里是包含所有分支的完整模型...这是适合的模型

def construct_lstm_cnn():

inp_lstm = Input((20,30))
lstm = LSTM(32, activation='relu')(inp_lstm)
inp_cnn = Input((32,32,3))
cnn = Conv2D(32, 3, activation='relu')(inp_cnn)
cnn = Flatten()(cnn)

cnn_lstm = Concatenate()([cnn, lstm])
cnn_lstm = Dense(1)(cnn_lstm)

fc_cnn = Dense(32, activation='relu')(cnn)
fc_cnn = Dropout(0.5)(fc_cnn)
fc_cnn = Dense(1)(fc_cnn)

fc_lstm = Dense(32, activation='relu')(lstm)
fc_lstm = Dropout(0.5)(fc_lstm)
fc_lstm = Dense(1)(fc_lstm)

model = Model(inputs=[inp_cnn, inp_lstm], outputs=[cnn_lstm, fc_cnn, fc_lstm])
return model

lstm_cnn = construct_lstm_cnn()
lstm_cnn.compile(...)
lstm_cnn.summary()

lstm_cnn.fit(...)

__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_10 (InputLayer) [(None, 32, 32, 3)] 0
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 30, 30, 32) 896 input_10[0][0]
__________________________________________________________________________________________________
input_9 (InputLayer) [(None, 20, 30)] 0
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 28800) 0 conv2d_18[0][0]
__________________________________________________________________________________________________
lstm_5 (LSTM) (None, 32) 8064 input_9[0][0]
__________________________________________________________________________________________________
dense_13 (Dense) (None, 32) 921632 flatten_3[0][0]
__________________________________________________________________________________________________
dense_15 (Dense) (None, 32) 1056 lstm_5[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 28832) 0 flatten_3[0][0]
lstm_5[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 32) 0 dense_13[0][0]
__________________________________________________________________________________________________
dropout_4 (Dropout) (None, 32) 0 dense_15[0][0]
__________________________________________________________________________________________________
dense_12 (Dense) (None, 1) 28833 concatenate_1[0][0]
__________________________________________________________________________________________________
dense_14 (Dense) (None, 1) 33 dropout_3[0][0]
__________________________________________________________________________________________________
dense_16 (Dense) (None, 1) 33 dropout_4[0][0]
==================================================================================================

对于推理时间,训练后,我们可以通过这种方式简单地删除无用的分支

lstm_cnn_inference = Model(lstm_cnn.input, lstm_cnn.output[0])
lstm_cnn_inference.summary()

__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_10 (InputLayer) [(None, 32, 32, 3)] 0
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 30, 30, 32) 896 input_10[0][0]
__________________________________________________________________________________________________
input_9 (InputLayer) [(None, 20, 30)] 0
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 28800) 0 conv2d_18[0][0]
__________________________________________________________________________________________________
lstm_5 (LSTM) (None, 32) 8064 input_9[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 28832) 0 flatten_3[0][0]
lstm_5[0][0]
__________________________________________________________________________________________________
dense_12 (Dense) (None, 1) 28833 concatenate_1[0][0]
==================================================================================================

这样我们只维护中央分支

关于python - 在推理时删除 Keras 模型中的辅助分支,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61858566/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com