- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试实现一种预测算法,该算法结合了来自 this paper 的 LSTM 和 CNN 模型。 .本质上,该论文提出了一个具有三个分支的模型:CNN 分支、LSTM 分支和将两者结合的合并分支。前两个分支仅在训练期间出现,以防止过度拟合并确保最终模型针对 CNN 和 LSTM 特征进行训练。这是论文中的图表(总损失函数中的 alpha、beta 和 gamma 只是这些特定损失的权重。) 据我了解,这些类似于 ResNet 和 Inception 模型中的辅助分支,以确保每一层都为模型输出做出贡献。我相应地实现了这个:
def construct_lstm_cnn(look_forward, look_back=30):
cnn = construct_cnn(look_forward, fc=False)
cnn_flatten = Flatten()(cnn.output)
lstm = construct_lstm(look_forward, look_back, 2, fc=False)
#Merged layer (the main branch that will be making prediction after training)
cnn_lstm = concatenate([cnn_flatten, lstm.output])
fc_merged = Dense(500, activation='relu')(cnn_lstm)
drop_merged = Dropout(0.5)(fc_merged)
fc2_merged = Dense(100, activation='relu')(drop_merged)
drop2_merged = Dropout(0.5)(fc2_merged)
fc3_merged = Dense(25 , activation='relu')(drop2_merged)
drop3_merged = Dropout(0.5)(fc3_merged)
pred_merged = Dense(look_forward, activation='linear')(drop3_merged)
#Auxiliary branch for cnn (want to remove at inference time)
fc_cnn = Dense(500, activation='relu')(cnn_flatten)
drop_cnn = Dropout(0.5)(fc_cnn)
fc2_cnn = Dense(100, activation='relu')(drop_cnn)
drop2_cnn = Dropout(0.5)(fc2_cnn)
fc3_cnn = Dense(25 , activation='relu')(drop2_cnn)
drop3_cnn = Dropout(0.5)(fc3_cnn)
pred_cnn_aux = Dense(look_forward, activation='linear')(drop3_cnn)
#Auxiliary branch for lstm (want to remove at inference time)
fc_lstm = Dense(500, activation='relu')(lstm.output)
drop_lstm = Dropout(0.5)(fc_lstm)
fc2_lstm = Dense(100, activation='relu')(drop_lstm)
drop2_lstm = Dropout(0.5)(fc2_lstm)
fc3_lstm = Dense(25 , activation='relu')(drop2_lstm)
drop3_lstm = Dropout(0.5)(fc3_lstm)
pred_lstm_aux = Dense(look_forward, activation='linear')(drop3_lstm)
#Final model with three branches
model = Model(inputs=[cnn.input, lstm.input], outputs=[pred_merged, pred_cnn_aux, pred_lstm_aux], name="lstm-cnn")
return model
但是,我似乎无法在 Keras 中找到删除列出的辅助分支的方法。有没有一种方法可以删除在推理期间无用的层?
最佳答案
我给你一个简单的例子
这里是包含所有分支的完整模型...这是适合的模型
def construct_lstm_cnn():
inp_lstm = Input((20,30))
lstm = LSTM(32, activation='relu')(inp_lstm)
inp_cnn = Input((32,32,3))
cnn = Conv2D(32, 3, activation='relu')(inp_cnn)
cnn = Flatten()(cnn)
cnn_lstm = Concatenate()([cnn, lstm])
cnn_lstm = Dense(1)(cnn_lstm)
fc_cnn = Dense(32, activation='relu')(cnn)
fc_cnn = Dropout(0.5)(fc_cnn)
fc_cnn = Dense(1)(fc_cnn)
fc_lstm = Dense(32, activation='relu')(lstm)
fc_lstm = Dropout(0.5)(fc_lstm)
fc_lstm = Dense(1)(fc_lstm)
model = Model(inputs=[inp_cnn, inp_lstm], outputs=[cnn_lstm, fc_cnn, fc_lstm])
return model
lstm_cnn = construct_lstm_cnn()
lstm_cnn.compile(...)
lstm_cnn.summary()
lstm_cnn.fit(...)
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_10 (InputLayer) [(None, 32, 32, 3)] 0
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 30, 30, 32) 896 input_10[0][0]
__________________________________________________________________________________________________
input_9 (InputLayer) [(None, 20, 30)] 0
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 28800) 0 conv2d_18[0][0]
__________________________________________________________________________________________________
lstm_5 (LSTM) (None, 32) 8064 input_9[0][0]
__________________________________________________________________________________________________
dense_13 (Dense) (None, 32) 921632 flatten_3[0][0]
__________________________________________________________________________________________________
dense_15 (Dense) (None, 32) 1056 lstm_5[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 28832) 0 flatten_3[0][0]
lstm_5[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 32) 0 dense_13[0][0]
__________________________________________________________________________________________________
dropout_4 (Dropout) (None, 32) 0 dense_15[0][0]
__________________________________________________________________________________________________
dense_12 (Dense) (None, 1) 28833 concatenate_1[0][0]
__________________________________________________________________________________________________
dense_14 (Dense) (None, 1) 33 dropout_3[0][0]
__________________________________________________________________________________________________
dense_16 (Dense) (None, 1) 33 dropout_4[0][0]
==================================================================================================
对于推理时间,训练后,我们可以通过这种方式简单地删除无用的分支
lstm_cnn_inference = Model(lstm_cnn.input, lstm_cnn.output[0])
lstm_cnn_inference.summary()
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_10 (InputLayer) [(None, 32, 32, 3)] 0
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 30, 30, 32) 896 input_10[0][0]
__________________________________________________________________________________________________
input_9 (InputLayer) [(None, 20, 30)] 0
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 28800) 0 conv2d_18[0][0]
__________________________________________________________________________________________________
lstm_5 (LSTM) (None, 32) 8064 input_9[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 28832) 0 flatten_3[0][0]
lstm_5[0][0]
__________________________________________________________________________________________________
dense_12 (Dense) (None, 1) 28833 concatenate_1[0][0]
==================================================================================================
这样我们只维护中央分支
关于python - 在推理时删除 Keras 模型中的辅助分支,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61858566/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!