gpt4 book ai didi

r - 数据表和扫描功能

转载 作者:行者123 更新时间:2023-12-04 15:25:38 26 4
gpt4 key购买 nike

使用 data.table,这将是在选定的列中“清除”统计信息的最快方法?

从(相当大的版本)DT 开始

p <- 3
DT <- data.table(id=c("A","B","C"),x1=c(10,20,30),x2=c(20,30,10))
DT.totals <- DT[, list(id,total = x1+x2) ]

我想通过索引目标列 (2:p) 以跳过键来获得以下 data.table 结果:
    id  x1  x2
[1,] A 0.33 0.67
[2,] B 0.40 0.60
[3,] C 0.75 0.25

最佳答案

我相信接近以下内容(使用相对较新的 set() 函数)将是最快的:

DT <- data.table(id = c("A","B","C"), x1 = c(10,20,30), x2 = c(20,30,10))
total <- DT[ , x1 + x2]

rr <- seq_len(nrow(DT))
for(j in 2:3) set(DT, rr, j, DT[[j]]/total)
DT
# id x1 x2
# [1,] A 0.3333333 0.6666667
# [2,] B 0.4000000 0.6000000
# [3,] C 0.7500000 0.2500000

FWIW,调用 set()采用以下形式:
# set(x, i, j, value), where: 
# x is a data.table
# i contains row indices
# j contains column indices
# value is the value to be assigned into the specified cells

与其他解决方案相比,我对此的相对速度的怀疑是基于来自 data.table's NEWS file 的这段话。 , 在关于 1.8.0 版更改的部分中:

o   New function set(DT,i,j,value) allows fast assignment to elements
of DT. Similar to := but avoids the overhead of [.data.table, so is
much faster inside a loop. Less flexible than :=, but as flexible
as matrix subassignment. Similar in spirit to setnames(), setcolorder(),
setkey() and setattr(); i.e., assigns by reference with no copy at all.

M = matrix(1,nrow=100000,ncol=100)
DF = as.data.frame(M)
DT = as.data.table(M)
system.time(for (i in 1:1000) DF[i,1L] <- i) # 591.000s
system.time(for (i in 1:1000) DT[i,V1:=i]) # 1.158s
system.time(for (i in 1:1000) M[i,1L] <- i) # 0.016s
system.time(for (i in 1:1000) set(DT,i,1L,i)) # 0.027s

关于r - 数据表和扫描功能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10110817/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com