- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有这样一句话:"I like sitting in my new chair and _____ about life"
.
我有一组特定的 token ,如 ["watch", "run", "think", "apple", "light"]
我想计算每个标记作为该不完整句子中的下一个单词出现的概率。希望我应该得到 "think"
的概率高于 "apple"
例如。
我正在使用 pytorch-transformers(特别是 GPT2LMHeadModel),一个可能的解决方案是用每个标记评估整个句子的分数,但是当要评估的标记数量约为 100 或 1000 时,计算时间开始太长了。
必须可以只处理句子一次,并以某种方式使用隐藏状态来计算 token 集的概率,但我不知道该怎么做。
有任何想法吗?提前致谢
编辑:
实际代码如下所示(每次都估计完整句子的概率)。对于每个句子,运行 score()
大约需要 0.1 秒。方法,如果我想评估数千个单词,它会变成几个小时。
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel
import pandas as pd
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
def score(sentence):
tokenize_input = tokenizer.tokenize(sentence)
tensor_input = torch.tensor([tokenizer.convert_tokens_to_ids(tokenize_input)])
loss = model(tensor_input, labels=tensor_input)
return -loss[0].item()
candidates = ["watch", "run", "think", "apple", "light"]
sent_template = "I like sitting in my new chair and {} about life"
print({candidate: score(sent_template.format(candidate)) for candidate in candidates})
最佳答案
您的示例产生了以下输出,并在我的环境中用了大约 48.5 秒完成了 282 个候选者(我只进行了 3 次运行):
{'watch': -5.406847953796387
, 'run': -5.533411502838135
, 'think': -4.525279521942139
, 'apple': -6.158637046813965
, 'light': -5.835141658782959}
正如评论中提到的,我认为您可以使用
past 进行一些计算。参数和快速
tokenizer如下面的注释示例所示:
import torch
from transformers import GPT2TokenizerFast, GPT2LMHeadModel
from torch.nn import CrossEntropyLoss
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
###We calculate the hidden_states and the past of the common left part of the sentence
past = "I like sitting in my new chair and"
past_tokenize_input = tokenizer.tokenize(past)
past_tensor_input = torch.tensor([tokenizer.convert_tokens_to_ids(past_tokenize_input)])
past_last_hidden_state, past = model.transformer(past_tensor_input)
def score(sentence, past, past_last_hidden_state, past_tensor_input):
tokenize_input = tokenizer.tokenize(sentence, )
tensor_input = torch.tensor([tokenizer.convert_tokens_to_ids(tokenize_input)])
###the following code is slightly modified from https://github.com/huggingface/transformers/blob/09a2f40684f77e62d0fd8485fe9d2d610390453f/src/transformers/modeling_gpt2.py#L604
###now we calculate the right part of the sentence with the already calculated past
transformer_outputs = model.transformer(
tensor_input,
past=past,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
)
###and concatenate the output of with the hidden_state of the left part of the sentence
hidden_states = torch.cat((past_last_hidden_state, transformer_outputs[0]), dim=1)
###the following part is exactly the same as https://github.com/huggingface/transformers/blob/09a2f40684f77e62d0fd8485fe9d2d610390453f/src/transformers/modeling_gpt2.py#L604
lm_logits = model.lm_head(hidden_states)
labels_input = torch.cat((past_tensor_input, tensor_input), dim=1)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels_input[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
return -loss.item()
candidates = ["watch", "run", "think", "apple", "light"]
sent_template = " {} about life"
print({candidate: score(sent_template.format(candidate), past, past_last_hidden_state, past_tensor_input) for candidate in candidates})
输出:
{'watch': -5.406846046447754
, 'run': -5.533413887023926
, 'think': -4.525280952453613
, 'apple': -6.158637046813965
, 'light': -5.835141181945801}
此处的运行时间为 40.5 秒,有 282 个候选(又是 3 个周期)。你也看到我失去了一些精度。
关于python - 在不计算整个句子的情况下估计给定句子的标记概率/logits,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62703391/
我想计算或至少估计放置在相机/kinect 前面的物体的体积。知道我应该从哪里开始吗?你推荐 OpenCV 吗?您是否推荐任何其他技术,例如声纳/激光? 最佳答案 一直在用 OpenCV 2.3 编写
我想知道 MySQL 对表中总行数的 TABLE_ROWS 估计值是否有限制或保证误差范围? 最佳答案 如果它与 SHOW TABLE STATUS 发出的数字类似,则至少会偏差 +/- 40%,有时
我们都曾 mock 过“还剩 X 分钟”的对话框,它似乎过于简单,但我们如何改进它呢? 实际上,输入是截至当前时间的一组下载速度,我们需要使用它来估计完成时间,也许带有确定性指示,例如使用一些 Y%
我们都曾 mock 过“还剩 X 分钟”的对话框,它似乎过于简单,但我们如何改进它呢? 实际上,输入是截至当前时间的一组下载速度,我们需要使用它来估计完成时间,也许带有确定性指示,例如使用一些 Y%
我的理解是 glmnet 采用矩阵,其中每一列都是一个解释变量。 我有一个包含约 10 个解释变量的数据框(其中一些是因子) 我怎样才能使用诸如 y~(x1*x2*x3)+(x4*x5)+x6 之类的
有没有办法估计运行 R 的时间?命令而不实际运行它或仅部分运行命令? 我知道 system.time()存在但需要运行整个命令然后它给出了花费的时间。 最佳答案 还有http://www.ats.uc
在尝试使用 libGD 在 PHP 中调整图像大小之前,我想检查是否有足够的内存来执行操作,因为“内存不足”会完全杀死 PHP 进程并且无法被捕获。 我的想法是,原始图像和新图像中的每个像素 (RGB
我有一些 VHDL 文件,我可以在 Debian 上用 ghdl 编译它们。一些人已将相同的文件改编为 ASIC 实现。算法有一个“大面积”实现和一个“紧凑”实现。我想编写更多实现,但要评估它们,我需
我在 Amazon EC2 上使用 RStudio 0.97.320 (R 2.15.3)。我的数据框有 20 万行和 12 列。 我正在尝试使用大约 1500 个参数来拟合逻辑回归。 R 使用 7%
我目前正在估算一个新项目。假设只有一名开发人员在处理它,我的高水平估计是 25 周。 实际上会有两个开发人员并行工作。减少估计的什么因素是合理的? (我意识到不会是0.5) 最佳答案 根据原始开发人员
我试图更好地理解创建 Postgres 索引所涉及的权衡。作为其中的一部分,我很想了解通常使用多少空间索引。我已通读 the docs ,但找不到这方面的任何信息。我一直在做自己的小实验来创建表和索引
我对 Azure 平台相当陌生,需要一些有关 Azure 搜索服务成本估算的帮助。每个月我们都会有大约 500GB 的文件被放入 Azure Blob 存储中。我们希望仅根据文件名使用 Azure 搜
我正在尝试最大化横截面面板数据中的数据点数量。我的矩阵结构如下,y 轴为年份,x 轴为国家/地区: A B C D 2000 NA 50 NA
如果我有两个时间序列,例如: t f1 #[1] 0.25 #> f2 #[1] 0.25 f phase_difference #[1] 0.5 这意味着时间序列相移 pi/2,因为它们应该根据
我对 Azure 平台相当陌生,需要一些有关 Azure 搜索服务成本估算的帮助。每个月我们都会有大约 500GB 的文件被放入 Azure Blob 存储中。我们希望仅根据文件名使用 Azure 搜
我使用了以下 R 包:mice、mitools 和 pROC。 基本设计:3 个预测变量度量,在 n~1,000 的数据缺失率在 5% 到 70% 之间。 1 个二进制目标结果变量。 分析目标:确定
如何使用 lsmeans 来估计两个成对对比的差异?例如——想象一个连续的 dv 和两个因子预测变量 library(lsmeans) library(tidyverse) dat % fac
我制作了一个使用 BigDecimal 的科学计算器。它有一个特别消耗资源的功能:阶乘。现在,输入任何数字都会启动计算。根据运行此代码的设备,答案会在不同的时间显示。输入像 50000 这样的巨大值!
我已经发出了 sympy 命令来求解某个方程或另一个方程。现在已经好几天了,我不知道什么时候能完成。 我可以使用 sympy 来记录调用 .solvers.solve 的进度吗?如果不是,我如何估计
最近我得到了一些 error C6020: Constant register limit exceeded at variable; more than 1024 registers needed
我是一名优秀的程序员,十分优秀!