gpt4 book ai didi

Python scipy.minimize : overflow encountered in double_scalars and invalid value encountered in double_scalars

转载 作者:行者123 更新时间:2023-12-04 15:20:47 25 4
gpt4 key购买 nike

我构建了一个自定义的 EST(指数平滑)模型。首先,我定义了一个函数,其中包含传递给第二个函数的参数定义,该函数执行计算并返回预测错误。然后将这些平方并求和。然后,最小化器应优化参数,以便最小化平方误差的总和。
如果我让函数以起始值运行,则该模型有效。但是一旦我把它从 scipy 中抛出最小化,它就会多次给我以下两个错误:
RuntimeWarning: double_scalars 中遇到溢出
运行时警告:在 double_scalars 中遇到无效值
我检查了我的数据 (y) 并且没有零值。因此计算不应返回任何零。
此外,我尝试了边界和其他最小化方法,这也无济于事。
(这些是我从其他问题中得到的想法)
任何帮助是极大的赞赏 :)
'''

from scipy.optimize import minimize

def model(params, y):

alpha = params[0]
beta = params[1]
gamma = params[2]
omega = params[3]
l_init_HM = params[4]
b_init_HM = params[5]
s_init7_HM = params[6]
s_init6_HM = params[7]
s_init5_HM = params[8]
s_init4_HM = params[9]
s_init3_HM = params[10]
s_init2_HM = params[11]
s_init_HM = params[12]

results = ETS_M_Ad_M(alpha,beta,gamma,omega,
l_init_HM,b_init_HM,s_init7_HM,
s_init6_HM,s_init5_HM,s_init4_HM,
s_init3_HM,s_init2_HM,s_init_HM,y)

error_list = results['errors_list']

error_list = [number ** 2 for number in error_list]

#returning the sum of squared errors
#this is the ML estimate, or rather Adjusted Least Squared (ALS)
#Hyndman p. 69
error_sum = sum(error_list)

return error_sum

def ETS_M_Ad_M(alpha,beta,gamma,omega,
l_init_HM,b_init_HM,s_init7_HM,
s_init6_HM,s_init5_HM,s_init4_HM,
s_init3_HM,s_init2_HM,s_init_HM,y):

#computing the number of time points as the length of the forecasting vector
t = len(y)
errors_list = list()
point_forecast = list()
l_list = list()
b_list = list()
s_list = list()

#parameter definition

#Initilaisation
l_past = l_init_HM
b_past = b_init_HM
s_past = s_init7_HM
s_past7 = s_init6_HM
s_past6 = s_init5_HM
s_past5 = s_init4_HM
s_past4 = s_init3_HM
s_past3 = s_init2_HM
s_past2 = s_init_HM

mu = (l_past + omega * b_past) * s_past
#compute forecasting error at timepoint t
e = (y[0] - mu) / y[0]
#compute absolute errors for ML estimation
e_absolute = y[0] - mu

#save estimation error for Likelihood computation
errors_list.append(e_absolute)
point_forecast.append(mu)
l_list.append(l_past)
b_list.append(b_past)
s_list.append(s_past)

#Updating
#updating all state estimates for time point t
l = (l_past + omega * b_past) * (1 + alpha * e)
b = omega * b_past + beta * (l_past + omega * b_past) * e
s = s_past * (1 + gamma * e)


#computation loop:
for i in range(1,t): #start at 1 as the first index '0' is used in the initialization
#Prediciton
#denote updated states from t-1 as past states for time point t
l_past = l
b_past = b
s_past7 = s_past6
s_past6 = s_past5
s_past5 = s_past4
s_past4 = s_past3
s_past3 = s_past2
s_past2 = s

#Observation
#compute one step ahead forecast for timepoint t
mu = (l_past + omega * b_past) * s_past
#compute forecasting error at timepoint t
e = (y[i] - mu) / y[i]
#compute absolute errors for ML estimation
e_absolute = y[i] - mu

#save estimation error for Likelihood computation
#saving squared errors
errors_list.append(e_absolute)
point_forecast.append(mu)
l_list.append(l_past)
b_list.append(b_past)
s_list.append(s_past)

#Updating
#updating all state estimates for time point t
l = (l_past + omega * b_past) * (1 + alpha * e)
b = omega * b_past + beta * (l_past + omega * b_past) * e
s = s_past * (1 + gamma * e)

return {'errors_list' : errors_list, 'point forecast' : point_forecast,
'l_list' : l_list, 'b_list' : b_list, 's_list' : s_list}

#Defining Starting Parameters
Starting_Parameters = [0.1, #alpha
0.01, #beta
0.01, #Gamma
0.99, #omega
5556.151751807499, #l_init
92.90080519198762, #b_init
1.256185460504065, #s_init7
1.0317387565497154, #s_init6
0.8373829313978448, #s_init5
0.8220047728017161, #s_init4
0.8461049900287951, #s_init3
0.9412435736696254, #s_init2
1.2653395150482378] #s_init
# -> starting values from Hyndman 2008 p.24


minimize(model, Starting_Parameters, args=(y), method='BFGS')

'''
y 中包含的时间序列通过以下链接上传到我的 GitHub:
https://github.com/MatthiasHerp/Public/blob/master/revenue_CA_1_FOODS_day.csv
只需导入它并将其存储为 y,代码就应该运行 :)

最佳答案

alpha、beta、gamma 和 omega 不应该限制在 0 和 1 之间吗?
此外您忘记分配 s_past在 for 循环中。

关于Python scipy.minimize : overflow encountered in double_scalars and invalid value encountered in double_scalars,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63361339/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com