gpt4 book ai didi

R dplyr 总结错误?

转载 作者:行者123 更新时间:2023-12-04 15:18:46 25 4
gpt4 key购买 nike

library(tidyverse)
stats <- read_csv('stats.csv')

## Warning: Installed Rcpp (0.12.12) different from Rcpp used to build dplyr (0.12.11).
## Please reinstall dplyr to avoid random crashes or undefined behavior.

我很确定在更新之前我得到了相同的行为 Rcpp .
sessionInfo()

## R version 3.3.2 (2016-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X El Capitan 10.11.6
##
## locale:
## [1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] dplyr_0.7.1 purrr_0.2.2.2 readr_1.1.1 tidyr_0.6.3
## [5] tibble_1.3.3 ggplot2_2.2.1 tidyverse_1.1.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.12 cellranger_1.1.0 plyr_1.8.4 bindr_0.1
## [5] forcats_0.2.0 tools_3.3.2 digest_0.6.12 lubridate_1.6.0
## [9] jsonlite_1.5 evaluate_0.10.1 nlme_3.1-131 gtable_0.2.0
## [13] lattice_0.20-35 pkgconfig_2.0.1 rlang_0.1.1 psych_1.7.5
## [17] yaml_2.1.14 parallel_3.3.2 haven_1.1.0 bindrcpp_0.2
## [21] xml2_1.1.1 httr_1.2.1 stringr_1.2.0 knitr_1.16
## [25] hms_0.3 rprojroot_1.2 grid_3.3.2 glue_1.1.1
## [29] R6_2.2.2 readxl_1.0.0 foreign_0.8-69 rmarkdown_1.6
## [33] modelr_0.1.0 reshape2_1.4.2 magrittr_1.5 backports_1.1.0
## [37] scales_0.4.1 htmltools_0.3.6 rvest_0.3.2 assertthat_0.2.0
## [41] mnormt_1.5-5 colorspace_1.3-2 stringi_1.1.5 lazyeval_0.2.0
## [45] munsell_0.4.3 broom_0.4.2

使用 filterinvoke_map执行组聚合
test <- function(impl, size) {
stats %>%
filter(message.size==size & implementation==impl) %>%
select(ts.in, ts.out) %>%
summarise(begin=min(ts.in),
end=max(ts.out),
process.time=end - begin,
message.rate=size * 10000/as.double(process.time)/1024/1024)
}

invoke_map_df(test, crossing(impl=c('Camel', 'Spark'), size=c(1024, 1024*5, 1024*10)) %>% transpose())

## # A tibble: 6 x 4
## begin end process.time message.rate
## <dttm> <dttm> <time> <dbl>
## 1 2017-07-17 04:27:52 2017-07-17 04:28:13 21 secs 0.4650298
## 2 2017-07-17 04:30:25 2017-07-17 04:32:02 97 secs 30.2029639
## 3 2017-07-17 04:32:58 2017-07-17 04:36:17 199 secs 29.4440955
## 4 2017-07-17 04:18:31 2017-07-17 04:18:54 23 secs 0.4245924
## 5 2017-07-17 04:19:47 2017-07-17 04:21:29 102 secs 28.7224265
## 6 2017-07-17 04:23:10 2017-07-17 04:26:28 198 secs 29.5928030

使用 group_bysummarise
stats %>%
group_by(implementation, message.size) %>%
summarise(total.size=sum(message.size),
begin=min(ts.in),
end=max(ts.out),
duration=end-begin,
message.rate=total.size/as.numeric(duration)/1024/1024) %>%
ungroup() %>%
select(begin, end, duration, message.rate)

## # A tibble: 6 x 4
## begin end duration message.rate
## <dttm> <dttm> <time> <dbl>
## 1 2017-07-17 04:27:52 2017-07-17 04:28:13 21.000000 secs 0.4650298
## 2 2017-07-17 04:30:25 2017-07-17 04:32:02 1.616667 secs 30.2029639
## 3 2017-07-17 04:32:58 2017-07-17 04:36:17 3.316667 secs 29.4440955
## 4 2017-07-17 04:18:31 2017-07-17 04:18:54 23.000000 secs 0.4245924
## 5 2017-07-17 04:19:47 2017-07-17 04:21:29 1.700000 secs 28.7224265
## 6 2017-07-17 04:23:10 2017-07-17 04:26:28 3.300000 secs 29.5928030

出于某种原因, process.time计算不正确,但令人惊讶的是 message.rate这取决于它是正确的!我在这里做错了吗?

使用 group_bydo
stats %>%
group_by(implementation, message.size) %>%
do(tibble(total.size=sum(.$message.size),
begin=min(.$ts.in),
end=max(.$ts.out),
duration=end-begin,
message.rate=total.size/as.numeric(duration)/1024/1024)) %>%
ungroup() %>%
select(begin, end, duration, message.rate)

## # A tibble: 6 x 4
## begin end duration message.rate
## <dttm> <dttm> <time> <dbl>
## 1 2017-07-17 04:27:52 2017-07-17 04:28:13 21 secs 0.4650298
## 2 2017-07-17 04:30:25 2017-07-17 04:32:02 97 secs 30.2029639
## 3 2017-07-17 04:32:58 2017-07-17 04:36:17 199 secs 29.4440955
## 4 2017-07-17 04:18:31 2017-07-17 04:18:54 23 secs 0.4245924
## 5 2017-07-17 04:19:47 2017-07-17 04:21:29 102 secs 28.7224265
## 6 2017-07-17 04:23:10 2017-07-17 04:26:28 198 secs 29.5928030

Do 的行为匹配 filterinvoke_map组合。

外部链接
  • R Markdown 版http://rpubs.com/yeyan/292004
  • Git Repo(包含数据)https://github.com/yeyan/dplyr_summarise
  • 最佳答案

    # Warning: Installed Rcpp (0.12.12) different from Rcpp used to build dplyr (0.12.11)

    我也遇到了这个问题,通过运行解决了
    remove.packages('Rcpp')
    install.packages('Rcpp')
    # You may need to run install.packages for multiple times and restart the R session in the process

    关于R dplyr 总结错误?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45157201/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com