gpt4 book ai didi

python - 理解 ‘backward()’ : How to code the Pytorch function ‘.backward()’ from scratch?

转载 作者:行者123 更新时间:2023-12-04 15:18:00 27 4
gpt4 key购买 nike

我是学习深度学习的新手,我一直在努力理解 Pytorch 中的“.backward()”是做什么的,因为它几乎完成了那里的大部分工作。因此,我试图详细了解反向函数的作用,因此,我将尝试逐步编写该函数的作用。您可以推荐我的任何资源(书籍、视频、GitHub 存储库)来开始编写函数代码吗?感谢您抽出时间,希望能得到您的帮助。

最佳答案

backward()正在计算关于 (w.r.t.) 图叶的梯度。 grad()函数更通用,它可以计算梯度 w.r.t.任何输入(包括叶子)。

我实现了grad()函数,前一段时间,你可以看看这个。它利用了自动微分 (AD) 的强大功能。

import math
class ADNumber:

def __init__(self,val, name=""):
self.name=name
self._val=val
self._children=[]

def __truediv__(self,other):
new = ADNumber(self._val / other._val, name=f"{self.name}/{other.name}")
self._children.append((1.0/other._val,new))
other._children.append((-self._val/other._val**2,new)) # first derivation of 1/x is -1/x^2
return new

def __mul__(self,other):
new = ADNumber(self._val*other._val, name=f"{self.name}*{other.name}")
self._children.append((other._val,new))
other._children.append((self._val,new))
return new

def __add__(self,other):
if isinstance(other, (int, float)):
other = ADNumber(other, str(other))
new = ADNumber(self._val+other._val, name=f"{self.name}+{other.name}")
self._children.append((1.0,new))
other._children.append((1.0,new))
return new

def __sub__(self,other):
new = ADNumber(self._val-other._val, name=f"{self.name}-{other.name}")
self._children.append((1.0,new))
other._children.append((-1.0,new))
return new


@staticmethod
def exp(self):
new = ADNumber(math.exp(self._val), name=f"exp({self.name})")
self._children.append((self._val,new))
return new

@staticmethod
def sin(self):
new = ADNumber(math.sin(self._val), name=f"sin({self.name})")
self._children.append((math.cos(self._val),new)) # first derivative is cos
return new

def grad(self,other):
if self==other:
return 1.0
else:
result=0.0
for child in other._children:
result+=child[0]*self.grad(child[1])
return result

A = ADNumber # shortcuts
sin = A.sin
exp = A.exp

def print_childs(f, wrt): # with respect to
for e in f._children:
print("child:", wrt, "->" , e[1].name, "grad: ", e[0])
print_child(e[1], e[1].name)


x1 = A(1.5, name="x1")
x2 = A(0.5, name="x2")
f=(sin(x2)+1)/(x2+exp(x1))+x1*x2

print_childs(x2,"x2")
print("\ncalculated gradient for the function f with respect to x2:", f.grad(x2))

输出:

child: x2 -> sin(x2) grad:  0.8775825618903728
child: sin(x2) -> sin(x2)+1 grad: 1.0
child: sin(x2)+1 -> sin(x2)+1/x2+exp(x1) grad: 0.20073512936690338
child: sin(x2)+1/x2+exp(x1) -> sin(x2)+1/x2+exp(x1)+x1*x2 grad: 1.0
child: x2 -> x2+exp(x1) grad: 1.0
child: x2+exp(x1) -> sin(x2)+1/x2+exp(x1) grad: -0.05961284871202578
child: sin(x2)+1/x2+exp(x1) -> sin(x2)+1/x2+exp(x1)+x1*x2 grad: 1.0
child: x2 -> x1*x2 grad: 1.5
child: x1*x2 -> sin(x2)+1/x2+exp(x1)+x1*x2 grad: 1.0

calculated gradient for the function f with respect to x2: 1.6165488003791766

关于python - 理解 ‘backward()’ : How to code the Pytorch function ‘.backward()’ from scratch?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63982778/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com