- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图用泊松分布拟合一些数据,但它不起作用。
x = [46,71,106,126,40,27,19,103,46,89,31,70,35,43,82,128,185,47,18,36,96,30,135,36,40,72,32,86,76,116,51,23,40,121,22,107,65,93,25,74,73,73,111,56,34,28,87,14,70,54,63,50,89,62,35,59,71,39,23,46,32,56,15,68,30,69,37,41,43,106,20,35,63,44,40,32,102,28,54,32,42,19,69,31,36,86,41,57,39,53,48,121,35,51,10,68,14,140,57,50,178,37,121,35,206,26,54,5,53,17,139,49,122,110,62,81,43,83,47,62,2,50,36,190,32,124,89,60,39,156,89,26,57,34,58,29,22,96,132,59,34,43,50,58,48,56,43,54,22,26,60,43,69,58,100,122,48,55,29,55,57,36,42,51,24,81,66,73,112,34,54,45,29,53,43,60,72,13,72,85,49,80,47,40,28,43,37,48,31,60,33,75,53,71,49,142,47,28,51,80,50,33,67,28,101,80,60,80,98,39,69,27,32,11,32,62,32,77,110,45,61,22,23,73,25,27,41,42,65,23,127,128,42,44,10,50,56,73,42,63,70,148,18,109,111,54,34,18,32,50,100,41,39,58,93,42,86,70,41,27,24,57,77,81,101,48,52,146,59,87,86,120,28,23,76,52,59,31,60,32,65,49,27,106,136,23,15,77,44,96,62,66,26,41,70,13,64,124,49,44,55,68,54,58,72,41,21,80,3,49,54,35,48,38,83,59,36,80,47,32,38,16,43,196,19,80,28,56,23,81,103,45,25,42,44,34,106,23,47,53,119,56,54,108,35,20,34,39,70,61,40,35,51,104,63,55,93,22,32,48,20,121,55,76,36,32,121,58,42,101,32,49,77,23,95,32,75,53,106,194,54,31,104,69,58,66,29,66,37,28,59,60,70,95,63,103,173,47,59,27] #geiger count
bins = np.histogram_bin_edges(x)
n, bins_edges, patches = plt.hist(x,bins, density=1, facecolor='darkblue',ec='white', log=0)
print(n)
bin_middles = 0.5*(bins_edges[1:] + bins_edges[:-1])
def fit_function(k, lamb):
return poisson.pmf(k, lamb)
parameters, cov_matrix = curve_fit(fit_function, bin_middles,n)
x_plot = np.arange(0,max(x))
plt.plot(x_plot,fit_function(x_plot, *parameters),label='Poisson')
plt.show()
我得到了这个结果,但我们可以看到它是不对的
最佳答案
您正在使用诸如 np.histogram_bin_edges
等用于连续分布的函数,而泊松分布是离散的。
根据 wikipedia , lambda 可以通过取样本的平均值来估计:
from scipy.stats import poisson
import numpy as np
from matplotlib import pyplot as plt
x = [46,71,106,126,40,27,19,103,46,89,31,70,35,43,82,128,185,47,18,36,96,30,135,36,40,72,32,86,76,116,51,23,40,121,22,107,65,93,25,74,73,73,111,56,34,28,87,14,70,54,63,50,89,62,35,59,71,39,23,46,32,56,15,68,30,69,37,41,43,106,20,35,63,44,40,32,102,28,54,32,42,19,69,31,36,86,41,57,39,53,48,121,35,51,10,68,14,140,57,50,178,37,121,35,206,26,54,5,53,17,139,49,122,110,62,81,43,83,47,62,2,50,36,190,32,124,89,60,39,156,89,26,57,34,58,29,22,96,132,59,34,43,50,58,48,56,43,54,22,26,60,43,69,58,100,122,48,55,29,55,57,36,42,51,24,81,66,73,112,34,54,45,29,53,43,60,72,13,72,85,49,80,47,40,28,43,37,48,31,60,33,75,53,71,49,142,47,28,51,80,50,33,67,28,101,80,60,80,98,39,69,27,32,11,32,62,32,77,110,45,61,22,23,73,25,27,41,42,65,23,127,128,42,44,10,50,56,73,42,63,70,148,18,109,111,54,34,18,32,50,100,41,39,58,93,42,86,70,41,27,24,57,77,81,101,48,52,146,59,87,86,120,28,23,76,52,59,31,60,32,65,49,27,106,136,23,15,77,44,96,62,66,26,41,70,13,64,124,49,44,55,68,54,58,72,41,21,80,3,49,54,35,48,38,83,59,36,80,47,32,38,16,43,196,19,80,28,56,23,81,103,45,25,42,44,34,106,23,47,53,119,56,54,108,35,20,34,39,70,61,40,35,51,104,63,55,93,22,32,48,20,121,55,76,36,32,121,58,42,101,32,49,77,23,95,32,75,53,106,194,54,31,104,69,58,66,29,66,37,28,59,60,70,95,63,103,173,47,59,27] bins = np.histogram_bin_edges(x)
n, bins_edges, patches = plt.hist(x, bins, density=1, facecolor='darkblue', ec='white', log=0)
lamd = np.mean(x)
x_plot = np.arange(0, max(x) + 1)
plt.plot(x_plot, poisson.pmf(x_plot, lamd), label='Poisson')
plt.show()
计算出的 lambda 约为 60。该图似乎表明泊松分布不是非常适合给定的样本。
关于python - 在 python 中拟合泊松直方图的问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64108155/
gnuplot 中拟合函数的正确方法是什么 f(x)有下一个表格吗? f(x) = A*exp(x - B*f(x)) 我尝试使用以下方法将其拟合为任何其他函数: fit f(x) "data.txt
(1)首先要建立数据集 ? 1
测量显示一个信号,其形式类似于具有偏移量和因子的平方根函数。如何找到系数并在一个图中绘制原始数据和拟合曲线? require(ggplot2) require(nlmrt) # may be thi
我想将以下函数拟合到我的数据中: f(x) = Offset+Amplitudesin(FrequencyT+Phase), 或根据 Wikipedia : f(x) = C+alphasin(ome
我正在尝试使用与此工具相同的方法在 C# 中拟合 Akima 样条曲线:https://www.mycurvefit.com/share/4ab90a5f-af5e-435e-9ce4-652c95c
问题:开放层适合 map ,只有在添加特征之后(视觉),我该如何避免这种情况? 我在做这个 第 1 步 - 创建特征 var feature = new ol.Feature({...}); 第 2
我有一个数据变量,其中包含以下内容: [Object { score="2.8", word="Blue"}, Object { score="2.8", word="Red"}, Objec
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我想用洛伦兹函数拟合一些数据,但我发现当我使用不同数量级的参数时拟合会出现问题。 这是我的洛伦兹函数: function [ value ] = lorentz( x,x0,gamma,amp )
我有一些数据,我希望对其进行建模,以便能够在与数据相同的范围内获得相对准确的值。 为此,我使用 polyfit 来拟合 6 阶多项式,由于我的 x 轴值,它建议我将其居中并缩放以获得更准确的拟合。 但
我一直在寻找一种方法来使数据符合 beta 二项分布并估计 alpha 和 beta,类似于 VGAM 库中的 vglm 包的方式。我一直无法找到如何在 python 中执行此操作。有一个 scipy
我将 scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) 函数与
在过去的几天里,我一直在尝试使用 python 绘制圆形数据,方法是构建一个范围从 0 到 2pi 的圆形直方图并拟合 Von Mises 分布。我真正想要实现的是: 具有拟合 Von-Mises 分
我有一个简单的循环,它在每次迭代中都会创建一个 LSTM(具有相同的参数)并将其拟合到相同的数据。问题是迭代过程中需要越来越多的时间。 batch_size = 10 optimizer = opti
我有一个 Python 系列,我想为其直方图拟合密度。问题:是否有一种巧妙的方法可以使用 np.histogram() 中的值来实现此结果? (请参阅下面的更新) 我目前的问题是,我执行的 kde 拟
我有一个简单的 keras 模型(正常套索线性模型),其中输入被移动到单个“神经元”Dense(1, kernel_regularizer=l1(fdr))(input_layer) 但是权重从这个模
我正在尝试解决 Boston Dataset 上的回归问题在random forest regressor的帮助下.我用的是GridSearchCV用于选择最佳超参数。 问题一 我是否应该将 Grid
使用以下函数,可以在输入点 P 上拟合三次样条: def plotCurve(P): pts = np.vstack([P, P[0]]) x, y = pts.T i = np.aran
我有 python 代码可以生成数字 x、y 和 z 的三元组列表。我想使用 scipy curve_fit 来拟合 z= f(x,y)。这是一些无效的代码 A = [(19,20,24), (10,
我正在尝试从 this answer 中复制代码,但是我在这样做时遇到了问题。我正在使用包 VGAM 中的gumbel 发行版和 fitdistrplus . 做的时候出现问题: fit = fi
我是一名优秀的程序员,十分优秀!