- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在学习 OpenACC(使用 PGI 的编译器)并尝试优化矩阵乘法示例。到目前为止,我提出的最快的实现如下:
void matrix_mul(float *restrict r, float *a, float *b, int N, int accelerate){
#pragma acc data copyin (a[0: N * N ], b[0: N * N]) copyout (r [0: N * N ]) if(accelerate)
{
# pragma acc region if(accelerate)
{
# pragma acc loop independent vector(32)
for (int j = 0; j < N; j ++)
{
# pragma acc loop independent vector(32)
for (int i = 0; i < N ; i ++ )
{
float sum = 0;
for (int k = 0; k < N ; k ++ ) {
sum += a [ i + k*N ] * b [ k + j * N ];
}
r[i + j * N ] = sum ;
}
}
}
}
Matrix multiplication (1500x1500):
GPU: Geforce GT650 M, 64-bit Linux
Data sz : 1500
Unaccelerated:
matrix_mul() time : 5873.255333 msec
Accelerated:
matrix_mul() time : 420.414700 msec
Data size : 1750 x 1750
matrix_mul() time : 876.271200 msec
Data size : 2000 x 2000
matrix_mul() time : 1147.783400 msec
Data size : 2250 x 2250
matrix_mul() time : 1863.458100 msec
Data size : 2500 x 2500
matrix_mul() time : 2516.493200 msec
Arrayfire 1500 x 1500 matrix mul
CUDA toolkit 4.2, driver 295.59
GPU0 GeForce GT 650M, 2048 MB, Compute 3.0 (single,double)
Memory Usage: 1932 MB free (2048 MB total)
af: 0.03166 seconds
Arrayfire 1750 x 1750 matrix mul
af: 0.05042 seconds
Arrayfire 2000 x 2000 matrix mul
af: 0.07493 seconds
Arrayfire 2250 x 2250 matrix mul
af: 0.10786 seconds
Arrayfire 2500 x 2500 matrix mul
af: 0.14795 seconds
最佳答案
你得到了 14 倍的加速,根据我的经验,这对 PGI 的编译器来说非常好。
首先,您是否使用 -Minfo 进行编译?这会给你很多来自编译器的关于优化选择的反馈。
您使用的是 32x32 线程块,但根据我的经验,16x16 线程块往往会获得更好的性能。如果省略 vector(32) 子句,编译器会选择什么调度?
使用限制声明 a 和 b 可能会让编译器生成更好的代码。
仅通过查看您的代码,我不确定共享内存是否有助于提高性能。如果您的代码可以在其中存储和重用值而不是转到全局内存,则共享内存仅有助于提高性能。在这种情况下,您不会在阅读后重用 a 或 b 的任何部分。
还值得注意的是,在共享内存使用方面,我对 PGI 的编译器有过糟糕的经历。它有时会做一些有趣的事情并缓存错误的值(如果您向后迭代循环,似乎通常会发生),产生错误的结果。我实际上必须使用未记录的 -ta=nvidia,nocache 选项编译我当前的应用程序,以使其正常工作,完全绕过共享内存的使用。
关于cuda - 如何使用 OpenACC 优化矩阵乘法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11791843/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!