- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
import pandas as pd
_df = pd.DataFrame({'itme': ['book', 'book' , 'car', ' car', 'bike', 'bike'], 'color': ['green', 'blue' , 'red', 'green' , 'blue', 'red'], 'val' : [-22.7, -109.6, -57.19, -11.2, -25.6, -33.61]})
item color val
book green -22.70
book blue -109.60
car red -57.19
car green -11.20
bike blue -25.60
bike red -33.61
大约有 12,000 行。
item green blue red
book -22.70 -109.60 null
car -11.20 null -57.19
bike null -25.60 -33.16
每行是项目名称,每个列是颜色名称。
how to know that -57.19 is for "car" and "red" in numpy array ?
所以,我需要创建一个字典来保持以下之间的映射:
item <--> row index in the numpy array
color <--> col index in the numpy array
我不想使用 iteritems 和 itertuples,因为它们对大型数据帧效率不高,因为
How to iterate over rows in a DataFrame in Pandas和
How to iterate over rows in a DataFrame in Pandas和
Python Pandas iterate over rows and access column names和
Does pandas iterrows have performance issues?
最佳答案
numpy.recarry
使用 pandas.DataFrame.to_records
,并且还使用 bool 索引 .item
是 pandas
的方法和 numpy
,所以不要使用 'item'
作为列名。已更改为 '_item'
. numpy
是 pandas
依赖性,以及大部分 pandas
矢量化功能直接对应numpy
. import pandas as pd
import numpy as np
# test data
df = pd.DataFrame({'_item': ['book', 'book' , 'car', 'car', 'bike', 'bike'], 'color': ['green', 'blue' , 'red', 'green' , 'blue', 'red'], 'val' : [-22.7, -109.6, -57.19, -11.2, -25.6, -33.61]})
# Use pandas Boolean index to
selected = df[(df._item == 'book') & (df.color == 'blue')]
# print(selected)
_item color val
book blue -109.6
# Alternatively, create a recarray
v = df.to_records(index=False)
# display(v)
rec.array([('book', 'green', -22.7 ), ('book', 'blue', -109.6 ),
('car', 'red', -57.19), ('car', 'green', -11.2 ),
('bike', 'blue', -25.6 ), ('bike', 'red', -33.61)],
dtype=[('_item', 'O'), ('color', 'O'), ('val', '<f8')])
# search the recarray
selected = v[(v._item == 'book') & (v.color == 'blue')]
# print(selected)
[('book', 'blue', -109.6)]
更新以响应 OP 编辑
pandas.DataFrame.pivot
reshape 数据框,然后使用前面提到的方法。 dfp = df.pivot(index='_item', columns='color', values='val')
# display(dfp)
color blue green red
_item
bike -25.6 NaN -33.61
book -109.6 -22.7 NaN
car NaN -11.2 -57.19
# create a numpy recarray
v = dfp.to_records(index=True)
# display(v)
rec.array([('bike', -25.6, nan, -33.61),
('book', -109.6, -22.7, nan),
('car', nan, -11.2, -57.19)],
dtype=[('_item', 'O'), ('blue', '<f8'), ('green', '<f8'), ('red', '<f8')])
# select data
selected = v.blue[(v._item == 'book')]
# print(selected)
array([-109.6])
关于python - 如何将 Pandas 数据框转换为带有列名的 numpy 数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64839600/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!