- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
职位描述如何归类到各自的行业?
我正在尝试使用 LSTM 对文本进行分类,特别是转换职位描述进入行业类别,不幸的是我到目前为止尝试过的东西只有 76% 的准确率。
使用 LSTM 对超过 30 类的文本进行分类的有效方法是什么?
我已经尝试了三种选择
Model_1
嵌入维度 = 80
最大序列长度 = 3000
时代 = 50
批量大小 = 100
model = Sequential()
model.add(Embedding(max_words, embedding_dimension, input_length=x_shape))
model.add(SpatialDropout1D(0.2))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(output_dim, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
Model_2
model = Sequential()
model.add(Embedding(max_words, embedding_dimension, input_length=x_shape))
model.add(LSTM(100))
model.add(Dropout(rate=0.5))
model.add(Dense(128, activation='relu', kernel_initializer='he_uniform'))
model.add(Dropout(rate=0.5))
model.add(Dense(64, activation='relu', kernel_initializer='he_uniform'))
model.add(Dropout(rate=0.5))
model.add(Dense(output_dim, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
Model_3
model.add(Embedding(max_words, embedding_dimension, input_length= x_shape, trainable=False))
model.add(SpatialDropout1D(0.4))
model.add(LSTM(100, dropout=0.4, recurrent_dropout=0.4))
model.add(Dense(128, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.039, seed=None)))
model.add(BatchNormalization())
model.add(Dense(64, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.55, seed=None)) )
model.add(BatchNormalization())
model.add(Dense(32, activation='sigmoid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.55, seed=None)) )
model.add(BatchNormalization())
model.add(Dense(output_dim, activation='softmax'))
model.compile(optimizer= "adam" , loss='categorical_crossentropy', metrics=['acc'])
我想知道如何提高网络的准确性。
最佳答案
您的代码顶部有一个简单的网络,但请尝试将此网络作为您的基线
model = Sequential()
model.add(Embedding(max_words, embedding_dimension, input_length=x_shape))
model.add(LSTM(output_dim//4)),
model.add(Dense(output_dim, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
这里的直觉是看 LSTM 能做多少工作。我们不需要它来输出完整的 30 个 output_dims(类的数量),而是一个较小的特征集来决定类。
您的大型网络具有像 Dense(128) 这样具有 100 个输入的层。这是 100x128 = 12,800 个连接要学习。
您的数据可能存在很大的不平衡,因此在下一步中,让我们使用名为 top_k_loss 的损失函数来解决这个问题。此损失函数将使您的网络仅在其遇到最大问题的训练示例上进行训练。这在没有任何其他管道的情况下很好地处理了类不平衡
def top_k_loss(k=16):
@tf.function
def loss(y_true, y_pred):
y_error_of_true = tf.keras.losses.categorical_crossentropy(y_true=y_true,y_pred=y_pred)
topk, indexs = tf.math.top_k( y_error_of_true, k=tf.minimum(k, y_true.shape[0]) )
return topk
return loss
以 128 到 512 的批量大小使用它。您可以像这样将它添加到您的模型编译中
model.compile(loss=top_k_loss(16), optimizer='adam', metrics=['accuracy']
现在,您会看到在其上使用 model.fit
会返回一些令人失望的数字。那是因为它只报告每个训练批处理中最差的 16 个。重新编译您的常规损失并运行 model.evaluate
以了解它在训练和测试中的表现如何。
训练 100 个 epoch,此时您应该已经看到了一些不错的结果。
像这样把整个模型生成和测试成一个函数
def run_experiment(lstm_layers=1, lstm_size=output_dim//4, dense_layers=0, dense_size=output_dim//4):
model = Sequential()
model.add(Embedding(max_words, embedding_dimension, input_length=x_shape))
for i in range(lstm_layers-1):
model.add(LSTM(lstm_size, return_sequences=True)),
model.add(LSTM(lstm_size)),
for i in range(dense_layers):
model.add(Dense(dense_size, activation='tanh'))
model.add(Dense(output_dim, activation='softmax'))
model.compile(loss=top_k_loss(16), optimizer='adam', metrics=['accuracy'])
model.fit(x=x,y=y,epochs=100)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
loss, accuracy = model.evaluate(x=x_test, y=y_test)
return loss
可以为您运行整个实验。现在是通过搜索找到更好的架构的问题。一种搜索方式是随机的。随机其实真的很好。如果你想花哨,我推荐 hyperopt。不要为网格搜索而烦恼,对于较大的搜索空间,随机通常胜过它。
best_loss = 10**10
best_config = []
for trial in range(100):
config = [
randint(1,4), # lstm layers
randint(8,64), # lstm_size
randint(0,8), # dense_layers
randint(8,64) # dense_size
]
result = run_experiment(*config)
if result < best_loss:
best_config = config
print('Found a better loss ',result,' from config ',config)
关于python - LSTM for 30 classes,严重过拟合,无法超过 76% 的测试准确率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64988828/
我通过 spring ioc 编写了一些 Rest 应用程序。但我无法解决这个问题。这是我的异常(exception): org.springframework.beans.factory.BeanC
我对 TestNG、Spring 框架等完全陌生,我正在尝试使用注释 @Value通过 @Configuration 访问配置文件注释。 我在这里想要实现的目标是让控制台从配置文件中写出“hi”,通过
为此工作了几个小时。我完全被难住了。 这是 CS113 的实验室。 如果用户在程序(二进制计算器)结束时选择继续,我们需要使用 goto 语句来到达程序的顶部。 但是,我们还需要释放所有分配的内存。
我正在尝试使用 ffmpeg 库构建一个小的 C 程序。但是我什至无法使用 avformat_open_input() 打开音频文件设置检查错误代码的函数后,我得到以下输出: Error code:
使用 Spring Initializer 创建一个简单的 Spring boot。我只在可用选项下选择 DevTools。 创建项目后,无需对其进行任何更改,即可正常运行程序。 现在,当我尝试在项目
所以我只是在 Mac OS X 中通过 brew 安装了 qt。但是它无法链接它。当我尝试运行 brew link qt 或 brew link --overwrite qt 我得到以下信息: ton
我在提交和 pull 时遇到了问题:在提交的 IDE 中,我看到: warning not all local changes may be shown due to an error: unable
我跑 man gcc | grep "-L" 我明白了 Usage: grep [OPTION]... PATTERN [FILE]... Try `grep --help' for more inf
我有一段代码,旨在接收任何 URL 并将其从网络上撕下来。到目前为止,它运行良好,直到有人给了它这个 URL: http://www.aspensurgical.com/static/images/a
在过去的 5 个小时里,我一直在尝试在我的服务器上设置 WireGuard,但在完成所有设置后,我无法 ping IP 或解析域。 下面是服务器配置 [Interface] Address = 10.
我正在尝试在 GitLab 中 fork 我的一个私有(private)项目,但是当我按下 fork 按钮时,我会收到以下信息: No available namespaces to fork the
我这里遇到了一些问题。我是 node.js 和 Rest API 的新手,但我正在尝试自学。我制作了 REST API,使用 MongoDB 与我的数据库进行通信,我使用 Postman 来测试我的路
下面的代码在控制台中给出以下消息: Uncaught DOMException: Failed to execute 'appendChild' on 'Node': The new child el
我正在尝试调用一个新端点来显示数据,我意识到在上一组有效的数据中,它在数据周围用一对额外的“[]”括号进行控制台,我认为这就是问题是,而新端点不会以我使用数据的方式产生它! 这是 NgFor 失败的原
我正在尝试将我的 Symfony2 应用程序部署到我的 Azure Web 应用程序,但遇到了一些麻烦。 推送到远程时,我在终端中收到以下消息 remote: Updating branch 'mas
Minikube已启动并正在运行,没有任何错误,但是我无法 curl IP。我在这里遵循:https://docs.traefik.io/user-guide/kubernetes/,似乎没有提到关闭
每当我尝试docker组成任何项目时,都会出现以下错误。 我尝试过有和没有sudo 我在这台机器上只有这个问题。我可以在Mac和Amazon WorkSpace上运行相同的容器。 (myslabs)
我正在尝试 pip install stanza 并收到此消息: ERROR: No matching distribution found for torch>=1.3.0 (from stanza
DNS 解析看起来不错,但我无法 ping 我的服务。可能是什么原因? 来自集群中的另一个 Pod: $ ping backend PING backend.default.svc.cluster.l
我正在使用Hibernate 4 + Spring MVC 4当我开始 Apache Tomcat Server 8我收到此错误: Error creating bean with name 'wel
我是一名优秀的程序员,十分优秀!