- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个数据集,每个时间戳由多个元组组成 - 每个元组都有一个计数。每个时间戳可能存在不同的元组。我想在 5 分钟内将它们组合在一起,并为每个唯一的元组添加计数。使用 Pandas group-by 有没有一种很好的干净的方法来做到这一点?
它们具有以下形式:
((u'67.163.47.231', u'8.27.82.254', 50186, 80, 6, 1377565195000), 2)
这是当前的一个列表,有一个 6 元组(最后一个条目是时间戳),然后计数。
每个时间戳都会有一个 5 元组的集合:
(5-tuple), t-time-stamp, count, example (for only one time stamp)
[((u'71.57.43.240', u'8.27.82.254', 33108, 80, 6, 1377565195000), 1),
((u'67.163.47.231', u'8.27.82.254', 50186, 80, 6, 1377565195000), 2),
((u'8.27.82.254', u'98.206.29.242', 25159, 80, 6, 1377565195000), 1),
((u'71.179.102.253', u'8.27.82.254', 50958, 80, 6, 1377565195000), 1)]
In [220]: df = DataFrame ( { 'key1' : [ (u'71.57.43.240', u'8.27.82.254', 33108, 80, 6), (u'67.163.47.231', u'8.27.82.254', 50186, 80, 6) ], 'data1' : np.array((1,2)), 'data2': np.array((1377565195000,1377565195000))})
In [226]: df
Out[226]:
data1 data2 key1
0 1 1377565195000 (71.57.43.240, 8.27.82.254, 33108, 80, 6)
1 2 1377565195000 (67.163.47.231, 8.27.82.254, 50186, 80, 6)
In [231]: df = DataFrame ( { 'key1' : [ (u'71.57.43.240', u'8.27.82.254', 33108, 80, 6), (u'67.163.47.231', u'8.27.82.254', 50186, 80, 6) ], 'data1' : np.array((1,2)),
.....: 'data2': np.array(( datetime.utcfromtimestamp(1377565195),datetime.utcfromtimestamp(1377565195) )) })
In [232]: df
Out[232]:
data1 data2 key1
0 1 2013-08-27 00:59:55 (71.57.43.240, 8.27.82.254, 33108, 80, 6)
1 2 2013-08-27 00:59:55 (67.163.47.231, 8.27.82.254, 50186, 80, 6)
Here's a simpler example:
time count city
00:00:00 1 Montreal
00:00:00 2 New York
00:00:00 1 Chicago
00:01:00 2 Montreal
00:01:00 3 New York
after bin-ing
time count city
00:05:00 3 Montreal
00:05:00 5 New York
00:05:00 1 Chicago
times = [ parse('00:00:00'), parse('00:00:00'), parse('00:00:00'), parse('00:01:00'), parse('00:01:00'),
parse('00:02:00'), parse('00:02:00'), parse('00:03:00'), parse('00:04:00'), parse('00:05:00'),
parse('00:05:00'), parse('00:06:00'), parse('00:06:00') ]
cities = [ 'Montreal', 'New York', 'Chicago', 'Montreal', 'New York',
'New York', 'Chicago', 'Montreal', 'Montreal', 'New York', 'Chicago', 'Montreal', 'Chicago']
counts = [ 1, 2, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 1]
frame = DataFrame( { 'city': cities, 'time': times, 'count': counts } )
In [150]: frame
Out[150]:
city count time
0 Montreal 1 2013-09-07 00:00:00
1 New York 2 2013-09-07 00:00:00
2 Chicago 1 2013-09-07 00:00:00
3 Montreal 2 2013-09-07 00:01:00
4 New York 3 2013-09-07 00:01:00
5 New York 1 2013-09-07 00:02:00
6 Chicago 1 2013-09-07 00:02:00
7 Montreal 1 2013-09-07 00:03:00
8 Montreal 2 2013-09-07 00:04:00
9 New York 2 2013-09-07 00:05:00
10 Chicago 2 2013-09-07 00:05:00
11 Montreal 1 2013-09-07 00:06:00
12 Chicago 1 2013-09-07 00:06:00
frame['time_5min'] = frame['time'].map(lambda x: pd.DataFrame([0],index=pd.DatetimeIndex([x])).resample('5min').index[0])
In [152]: frame
Out[152]:
city count time time_5min
0 Montreal 1 2013-09-07 00:00:00 2013-09-07 00:00:00
1 New York 2 2013-09-07 00:00:00 2013-09-07 00:00:00
2 Chicago 1 2013-09-07 00:00:00 2013-09-07 00:00:00
3 Montreal 2 2013-09-07 00:01:00 2013-09-07 00:00:00
4 New York 3 2013-09-07 00:01:00 2013-09-07 00:00:00
5 New York 1 2013-09-07 00:02:00 2013-09-07 00:00:00
6 Chicago 1 2013-09-07 00:02:00 2013-09-07 00:00:00
7 Montreal 1 2013-09-07 00:03:00 2013-09-07 00:00:00
8 Montreal 2 2013-09-07 00:04:00 2013-09-07 00:00:00
9 New York 2 2013-09-07 00:05:00 2013-09-07 00:05:00
10 Chicago 2 2013-09-07 00:05:00 2013-09-07 00:05:00
11 Montreal 1 2013-09-07 00:06:00 2013-09-07 00:05:00
12 Chicago 1 2013-09-07 00:06:00 2013-09-07 00:05:00
In [153]: df = frame.groupby(['time_5min', 'city']).aggregate('sum')
In [154]: df
Out[154]:
count
time_5min city
2013-09-07 00:00:00 Chicago 2
Montreal 6
New York 6
2013-09-07 00:05:00 Chicago 3
Montreal 1
New York 2
In [155]: df.reset_index(1)
Out[155]:
city count
time_5min
2013-09-07 00:00:00 Chicago 2
2013-09-07 00:00:00 Montreal 6
2013-09-07 00:00:00 New York 6
2013-09-07 00:05:00 Chicago 3
2013-09-07 00:05:00 Montreal 1
2013-09-07 00:05:00 New York 2
最佳答案
如果将日期设置为索引,则可以使用 TimeGrouper(例如,它允许您按 5 分钟间隔进行分组):
In [11]: from pandas.tseries.resample import TimeGrouper
In [12]: df.set_index('data2', inplace=True)
In [13]: g = df.groupby(TimeGrouper('5Min'))
In [14]: g['key1'].nunique()
Out[14]:
2013-08-27 00:55:00 2
dtype: int64
In [15]: g['key1'].apply(pd.value_counts)
Out[15]:
2013-08-27 00:55:00 (71.57.43.240, 8.27.82.254, 33108, 80, 6) 1
(67.163.47.231, 8.27.82.254, 50186, 80, 6) 1
dtype: int64
In [16]: g['key1'].apply(pd.value_counts).reset_index(1)
Out[16]:
level_1 0
2013-08-27 00:55:00 (71.57.43.240, 8.27.82.254, 33108, 80, 6) 1
2013-08-27 00:55:00 (67.163.47.231, 8.27.82.254, 50186, 80, 6) 1
get_dummies
,见编辑历史。
关于用于 Python 的 Pandas,分组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18645127/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!