- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 fastai 和 pytorch 从 huggingface 微调 XLMRoberta。我已经训练了模型,并且在我训练它的机器上一切正常。
但是当我尝试在另一台机器上加载模型时,我得到 OSError - Not Found - No such file or directory
pointing to .cache/torch/transformers/
。问题是 vocab_file
的路径。
我用过 fastai 的 Learner.export将模型导出到 .pkl
文件中,但我不认为这个问题与 fastai 有关,因为我发现了 the same issue出现在 flairNLP 中。
在训练期间存储 vocab_file 的缓存文件夹的路径似乎嵌入到 .pkl
文件中:
错误来自变压器的XLMRobertaTokenizer __setstate__
:
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
它尝试使用文件中的路径加载 vocab_file。
我试过使用以下方法修补此方法:
pretrained_model_name = "xlm-roberta-base"
vocab_file = XLMRobertaTokenizer.from_pretrained(pretrained_model_name).vocab_file
def _setstate(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
XLMRobertaTokenizer.__setstate__ = MethodType(_setstate, XLMRobertaTokenizer(vocab_file))
这成功加载了模型,但导致了其他问题,例如缺少模型属性和其他不需要的问题。
有人能解释一下为什么路径嵌入在文件中吗?有没有办法在不重新导出模型的情况下配置它,或者如果必须重新导出如何使用 fastai、torch 和 huggingface 动态配置它。
最佳答案
我遇到了同样的错误。我在 fastai 版本 = 1.0.61 的下游分类任务上对 XLMRoberta 进行了微调。我正在 docker 中加载模型。
我不确定为什么要嵌入路径,但我找到了解决方法。发布给可能正在寻找解决方法的 future 读者,因为通常不可能进行再培训。
RUN mkdir -p /home/<username>/.cache/torch/transformers
COPY filename:/home/<username>/.cache/torch/transformers/filename
关于nlp - 在另一台机器上加载经过训练的模型——fastai、torch、huggingface,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65249790/
我想向 Torch 添加一个损失函数,用于计算预测值和目标值之间的编辑距离。 有没有一种简单的方法来实现这个想法? 还是我必须编写自己的具有向后和向前功能的类? 最佳答案 如果您的标准可以表示为现有模
我如何沿着 torch 中的列求和?我有一个 128*1024 的张量,我想通过对所有行求和得到一个 1*1024 的张量。 例如:一个: 1 2 3 4 5 6 我想要b 5 7 9 最佳答案 为此
阅读pytorch文档后,我仍然需要帮助来理解torch.mm、torch.matmul和torch.mul之间的区别.由于我不完全理解它们,我无法简明扼要地解释这一点。 B = torch.tens
minibatch = torch.Tensor(5, 2, 3,5) m = nn.View(-1):setNumInputDims(1) m:forward(minibatch) 给出一个大小
有两个 PyTorch 存储库: https://github.com/hughperkins/pytorch https://github.com/pytorch/pytorch 第一个显然需要 T
晚上好, 我刚刚安装了 PyTorch 0.4.0,我正在尝试执行第一个教程“什么是 PyTorch?” 我编写了一个 Tutorial.py 文件,我尝试使用 Visual Studio Code
我有一个浮点值列表(或一个 numpy 数组)。我想创建一个包含所有这些值的一维 torch 张量。我可以创建 torch 张量并运行循环来存储值。 但我想知道有没有什么办法,我可以使用列表或数组中的
这是我在将 convertinf DQN 转换为 Double DQN 来解决 cartpole 问题时遇到的问题。我快要弄清楚了。 tensor([0.1205, 0.1207, 0.1197, 0
鉴于: x_batch = torch.tensor([[-0.3, -0.7], [0.3, 0.7], [1.1, -0.7], [-1.1, 0.7]]) 然后申请 torch.sigmoid(
我正在学习一门类(class),该类(class)使用已弃用的 PyTorch 版本,该版本不会根据需要将 torch.int64 更改为 torch.LongTensor。当前引发错误的代码部分是:
我正在尝试从 this repo 运行代码.我通过将 main.py 中的第 39/40 行从更改为禁用了 cuda parser.add_argument('--type', default='to
从 0.4.0 版本开始,可以使用 torch.tensor 和 torch.Tensor 有什么区别?提供这两个非常相似且令人困惑的替代方案的原因是什么? 最佳答案 在 PyTorch 中,torc
用于强化学习的 OpenAI REINFORCE 和 actor-critic 示例具有以下代码: REINFORCE : policy_loss = torch.cat(policy_loss).s
我在装有 CentOS Linux 7.3.1611(核心)操作系统的计算机上使用 Python 3.5.1。 我正在尝试使用 PyTorch 并开始使用 this tutorial . 不幸的是,示
我正在尝试使用 torch.load 加载预训练模型。 我收到以下错误: ModuleNotFoundError: No module named 'utils' 我已通过从命令行打开它来检查我使用的
这篇文章与我之前的 How to define a Python Class which uses R code, but called from rTorch? 有关. 我在 R ( https:/
是否torch.manual_seed包括torch.cuda.manual_seed_all的操作? 如果是,我们可以使用 torch.manual_seed设置种子。否则我们应该调用这两个函数。
我们可以使用 torch.Tensor([1., 2.], device='cuda') 在 GPU 上分配张量.使用这种方式而不是torch.cuda.Tensor([1., 2.])有什么不同吗?
我正在尝试深入了解 PyTorch 张量内存模型的工作原理。 # input numpy array In [91]: arr = np.arange(10, dtype=float32).resha
我同时安装了 python38,37 和 anaconda,操作系统 - win10,x64。 我无法在 py38,37 中安装 torch - 但在 anaconda 中安装了它。 系统环境变量“路
我是一名优秀的程序员,十分优秀!