gpt4 book ai didi

python - 为什么这种模拟退火算法应用于TSP不收敛?

转载 作者:行者123 更新时间:2023-12-04 15:07:13 26 4
gpt4 key购买 nike

作为练习,我必须找到此旅行商问题的最佳解决方案,唯一的区别是销售员可能不会访问第一个坐标两次。给出的最佳值应该在 1200 左右。我不明白为什么这不会收敛。另外一个重要的注意事项是使用曼哈顿距离度量而不是欧几里得距离。

def shuffle_coords(coords):
x0 = coords[0]
coords = shuffle(coords[1:])
return np.insert(coords,0,x0,axis = 0)

def distance(x,y):
return abs(x[1] - y[1]) + abs(x[0] - y[0])

这里的坐标是随机打乱的。

def shuffle(array):
df = pd.DataFrame(array)
return df.sample(len(array)).to_numpy()


def path_distance(path):
dist = []
for i in range(1,len(path)):
dist.append(distance(path[i],path[i-1]))
return np.sum(dist)

这里初始化了模拟退火算法。

def SA_distance(path, T_0,T_min, alpha):
T = T_0
dist = path_distance(path)

while T > T_min:
new_path = gen_subtour(path)
diffF = path_distance(new_path) - dist
if diffF < 0:
path = new_path
dist = path_distance(path)

elif np.exp(-(diffF/T)) > random.uniform(0,1):
path = new_path
dist = path_distance(path)

T = T * alpha
print(dist,T)
return dist,path

此处生成随机子路线,同时保持 x0 不变。

def gen_subtour(path):
subset = shuffle(np.delete(path,0,axis =0))
subset = shuffle(path)
if random.uniform(0,1) < 0.5:
subset = np.flipud(subset)
else:
j = random.randint(1,(len(subset)-1))
p = subset[j-1]
q = subset[j]
subset = np.delete(subset,[j-1,j],axis = 0)
subset = np.insert(subset,0,p,axis = 0)
subset = np.insert(subset,len(subset),q,axis = 0)

return np.insert(subset,0,path[0],axis = 0)

def main():
T_0 = 12
T_min = 10**-9
alpha = 0.999
coords = np.array([[375, 375],[161, 190], [186, 169],[185, 124],
[122, 104],[109, 258], [55, 153] ,[120, 49],
[39, 85] ,[59, 250] , [17, 310] ,[179, 265],
[184, 198]])
path , distance = SA_distance(coords,T_0,T_min,alpha)

最佳答案

我已经测试过了,我的第一直觉是 gen_subtour() 运行不正常,可能是它改变了路线,步数太多。

我会尝试不同的版本,看看效果如何。 SA 方案似乎运作良好,我认为错误在于提案。

无论如何,这里有一些代码希望能帮助您更好地进行测试。

我使用 pdist 预先计算曼哈顿距离,即;

import numpy as np
from scipy.spatial.distance import pdist, cdist, squareform

coords = np.array([[375, 375],[161, 190], [186, 169],[185, 124],
[122, 104],[109, 258], [55, 153] ,[120, 49],
[39, 85] ,[59, 250] , [17, 310] ,[179, 265],
[184, 198]])

Y = pdist(coords, 'cityblock')

distance_matrix = squareform(Y)
nodes_count = coords.shape[0]

并定义开始于

def random_start():
"""
Random start, returns a state
"""
a = np.arange(0,nodes_count)
np.random.shuffle(a)
return a

目标函数,这里有我们不回原点的版本;

def objective_function( route ):
# uncomment when testing new/modify neighbors
# assert check_all_nodes_visited(route)

return np.sum( distance_matrix[route[1:],route[:-1]] )

我这里有 3 种建议,基于一条路线;

def random_swap( route ):
"""
Random Swap - a Naive neighbour function

Will only work for small instances of the problem
"""
route_copy = route.copy()

random_indici = np.random.choice( route , 2, replace = False)
route_copy[ random_indici[0] ] = route[ random_indici[1] ]
route_copy[ random_indici[1] ] = route[ random_indici[0] ]

return route_copy

def vertex_insert( route, nodes=1 ):
"""
Vertex Insert Neighbour, inspired by

http://www.sciencedirect.com/science/article/pii/S1568494611000573
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
index_of_point_to_reroute = random_indici[0]
value_of_point_to_reroute = route[ random_indici[0] ]
index_of_new_place = random_indici[1]
route_copy = np.delete(route_copy, index_of_point_to_reroute)
route_copy = np.insert(route_copy, index_of_new_place, values=value_of_point_to_reroute)
return route_copy

def block_reverse( route, nodes=1 ):
"""
Block Reverse Neighbour, inspired by

http://www.sciencedirect.com/science/article/pii/S1568494611000573

Note that this is a random 2-opt operation.
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
index_of_cut_left = np.min(random_indici)
index_of_cut_right = np.max(random_indici)
route_copy[ index_of_cut_left:index_of_cut_right ] = np.flip(route_copy[ index_of_cut_left:index_of_cut_right ])

return route_copy

您可以选择在 SA 之后进行 2-opt 轮次,以确保没有交叉。

def swap_for_2opt( route, i, k):
"""
Helper for 2-opt search
"""
route_copy = route.copy()
index_of_cut_left = i
index_of_cut_right = k
route_copy[ index_of_cut_left:index_of_cut_right ] = np.flip(route_copy[ index_of_cut_left:index_of_cut_right ])

return route_copy

def local_search_2opt( route ):
"""
Local Optimum with 2-opt

https://en.wikipedia.org/wiki/2-opt

"""
steps_since_improved = 0
still_improving = True

route = route.copy()

while still_improving :
for i in range( route.size - 1 ):
for k in np.arange( i + 1, route.size ):
alt_route = swap_for_2opt(route, i, k)

if objective_function(alt_route) < objective_function(route):
route = alt_route.copy()
steps_since_improved = 0

steps_since_improved += 1

if steps_since_improved > route.size + 1:
still_improving = False
break

return route

并使用 frigidum 进行 SA

import frigidum


local_opt = frigidum.sa(random_start=random_start,
objective_function=objective_function,
neighbours=[random_swap, vertex_insert, block_reverse],
copy_state=frigidum.annealing.naked,
T_start=10**5,
alpha=.95,
T_stop=0.001,
repeats=10**2,
post_annealing = local_search_2opt)

返回的路由几乎总是 1145。

我已经在 frigidum 上发布了一般提示和技巧主页。

关于python - 为什么这种模拟退火算法应用于TSP不收敛?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65890955/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com