gpt4 book ai didi

callback - 使用 plotly express 并在一页上有多个图形时,随机出现导入错误

转载 作者:行者123 更新时间:2023-12-04 15:05:46 27 4
gpt4 key购买 nike

Dash 相对较新,这是一个困扰我几个月的问题。我正在制作一个多页面应用程序,它使用卡片和嵌入在卡体中的图表显示一些基本数据趋势。在 30% 的情况下,应用程序运行良好,没有任何错误,而在另外 70% 的情况下,它会抛出以下任一错误:

  1. ImportError:无法从部分初始化的模块“plotly.validator_cache”导入名称“ValidatorCache”(很可能是由于循环导入)或者
  2. ImportError:无法从部分初始化的模块“plotly.graph_objects”中导入名称“Layout”(很可能是由于循环导入)

这两种情况都是随机出现的,我通常会刷新应用程序以使它们消失。但显然我做错了什么。我有一组触发图形回调的下拉菜单。我一直在为这事绞尽脑汁。任何帮助/线索将不胜感激。我在错误中看到的唯一模式是,当在回调中调用 plotly express graphs 时,它们似乎会出现。

我做错了什么?我在网上到处搜索寻求帮助,但一无所获。

分享一些相关的代码片段(这可能太长而且很多部分对问题不重要,但可以让您大致了解我一直在努力的方向)

import dash
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import plotly.express as px


card_content1_1 = [
dbc.CardHeader([dbc.Row([html.H5("SALES VOLUME TREND", className = "font-weight-bold text-success"),
dbc.Button(
html.I(className="fa fa-window-maximize"),
color="success",
id="sales_maximize",
className="ml-auto",
# href="www.cogitaas.com"
)
])]),
dbc.CardBody(
[dcc.Graph(
id='sales_graph',
figure={},
style={'height':'30vh'}
# className="mt-5"
)])]


card_stacked_discount = [
dbc.CardHeader([dbc.Row([html.H5("VOLUMES UNDER DIFFERENT DISCOUNT LEVELS", className="font-weight-bold text-info text-center"),
dbc.Button(
html.I(className="fa fa-window-maximize"),
color="info",
id="discount_maximize",
className="ml-auto",
# href="www.cogitaas.com"
)
])]),
dbc.CardBody(
[dcc.Dropdown(
id = 'stacked_discount_dropdown',
options =stacked_discount_options,
value=stacked_discount_options[0].get('value'),
style={'color':'black'},
# multi=True
),
dcc.Graph(
id='stacked_discount_graph',
figure={},
style={'height':'30vh'}
)])]
cards = html.Div(
[
dbc.Row(
[
dbc.Col(dbc.Card(card_content1_1, color="success", outline=True,
style={'height':'auto'}), width=8),


],
className="mb-4",

),

dbc.Row(
[
dbc.Col(dbc.Card(card_stacked_discount, color="info", outline=True), width=8),
dbc.Col(dbc.Card([
dbc.Row([
dbc.Col(dbc.Card(disc_sub_title, color="info", inverse=True)),
]),
html.Br(),
dbc.Row([
dbc.Col(dbc.Card(disc_sub_card1, color="info", outline=True)),
]),
]), width=4)
],
className="mb-4",
),
]
)

tab1_content = dbc.Card(
dbc.CardBody(
[cards,]
),
className="mt-3",
)

tabs = dbc.Tabs(dbc.Tab(tab1_content, label="Data", label_style={'color':'blue'}, tab_style={"margin-left":"auto"}),])

content = html.Div([
html.Div([tabs]),
],id="page-content")

app.layout = html.Div([dcc.Location(id="url"), content])


@app.callback(
dash.dependencies.Output('sales_graph', 'figure'),
[dash.dependencies.Input('platform-dropdown', 'value'),
dash.dependencies.Input('signature-dropdown', 'value'),
dash.dependencies.Input('franchise-dropdown', 'value'),
dash.dependencies.Input('sales_maximize', 'n_clicks'),
dash.dependencies.Input('time-dropdown', 'value'),
])
def update_sales_graph(plat, sign, fran, maximize, time_per):
print(str(time_per)+"Test")
time_ax=[]
if isinstance(time_per,str):
time_ax.append(time_per)
time_per=time_ax
if (time_per==None) or ('Full Period' in (time_per)):
dff = df[(df.Platform==plat) & (df.Signature==sign) & (df.Franchise==fran)]
elif ('YTD' in time_per):
dff = df[(df.Platform == plat) & (df.Signature == sign) & (df.Franchise == fran) & (df.year==2020)]
else:
dff = df[(df.Platform==plat) & (df.Signature==sign) & (df.Franchise==fran) & (df.Qtr_yr.isin(time_per))]

fig = px.area(dff, x='Date', y='Qty_Orig', color_discrete_sequence=px.colors.qualitative.Dark2)
fig.add_trace(go.Scatter(x=dff['Date'], y=dff['Outliers'], mode = 'markers', name='Outliers',
line=dict(color='darkblue')))
fig.add_trace(go.Scatter(x=dff['Date'], y=dff['bestfit'], name='Long Term Trend',
line=dict(color='darkblue')))
fig.update_layout(font_family="Rockwell",
title={'text': fran + " Volume Trend",
'y': 0.99,
# 'x': 0.15,
# 'xanchor': 'auto',
'yanchor': 'top'
},
legend=dict(
orientation="h",
# y=-.15, yanchor="bottom", x=0.5, xanchor="center"
),
yaxis_visible=False, yaxis_showticklabels=False,
xaxis_title=None,
margin=dict(l=0, r=0, t=0, b=0, pad=0),
plot_bgcolor='White',
paper_bgcolor='White',
)
fig.update_xaxes(showgrid=False, zeroline=True)
fig.update_yaxes(showgrid=False, zeroline=True)
changed_id = [p['prop_id'] for p in dash.callback_context.triggered][0]
if 'maximize' in changed_id:
fig.show()
return fig


@app.callback(
dash.dependencies.Output('stacked_discount_graph', 'figure'),
[dash.dependencies.Input('platform-dropdown', 'value'),
dash.dependencies.Input('signature-dropdown', 'value'),
dash.dependencies.Input('franchise-dropdown', 'value'),
dash.dependencies.Input('discount_maximize', 'n_clicks'),
dash.dependencies.Input('stacked_discount_dropdown', 'value'),
dash.dependencies.Input('time-dropdown', 'value'),
])
def stacked_discount(plat, sign, fran, maximize, sales_days, time_per):
time_ax=[]
if isinstance(time_per,str):
time_ax.append(time_per)
time_per=time_ax
# else:
# time_per=list(time_per)

if (time_per==None) or ('Full Period' in (time_per)):
df_promo = df_promo_vol[(df_promo_vol.Platform==plat) & (df_promo_vol.Signature==sign) & (df_promo_vol.Franchise==fran)]
elif ('YTD' in time_per):
df_promo = df_promo_vol[(df_promo_vol.Platform == plat) & (df_promo_vol.Signature == sign) & (df_promo_vol.Franchise == fran) & (df_promo_vol.Year==2020)]
else:
df_promo = df_promo_vol[(df_promo_vol.Platform==plat) & (df_promo_vol.Signature==sign) & (df_promo_vol.Franchise==fran) & (df_promo_vol.Qtr_yr.isin(time_per))]

color_discrete_map = {
"0 - 10": "orange",
"10 - 15": "green",
"15 - 20": "blue",
"20 - 25": "goldenrod",
"25 - 30": "magenta",
"30 - 35": "red",
"35 - 40": "aqua",
"40 - 45": "violet",
"45 - 50": "brown",
"50 + ": "black"
}

category_orders = {'disc_range': ['0 - 10', '10 - 15', '15 - 20', '20 - 25', '25 - 30', '30 - 35', '35 - 40',
'40 - 45', '45 - 50', '50 + ']}

if (sales_days == None) or (sales_days == 'sales_act'):
fig = px.bar(df_promo, x='start', y='units_shipped', color='disc_range',
color_discrete_map=color_discrete_map,
category_orders=category_orders,
)
else:
fig = px.bar(df_promo, x='start', y='Date', color="disc_range",
color_discrete_map=color_discrete_map,
category_orders=category_orders,
)

fig.update_layout(font_family="Rockwell",
title={'text': fran + " Sales Decomposition",
'y': 0.99,
'x': 0.1,
# 'xanchor': 'auto',
'yanchor': 'top'
},
legend=dict(
orientation="h",
# y=-.15, yanchor="bottom", x=0.5, xanchor="center"
),
# yaxis_visible=False, yaxis_showticklabels=False,
xaxis_title=None,
margin=dict(l=0, r=0, t=30, b=30, pad=0),
plot_bgcolor='White',
paper_bgcolor='White',
)
fig.update_xaxes(showgrid=False, zeroline=True)
fig.update_yaxes(showgrid=False, zeroline=True)
changed_id = [p['prop_id'] for p in dash.callback_context.triggered][0]
if 'maximize' in changed_id:
fig.show()
return fig

最佳答案

好吧,看来我可能是无意中找到了答案。我在多个回调中使用了几乎相同的输入,这可能会对输入的顺序造成一些干扰。一旦我将代码集成到一个具有多个输出的回调中,问题似乎就消失了。

关于callback - 使用 plotly express 并在一页上有多个图形时,随机出现导入错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66149087/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com