- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
可以使用“位打包”技术压缩无符号整数:在一个无符号整数 block 中,只存储有效位,当一个 block 中的所有整数都“小”时,会导致数据压缩。该方法称为 FOR (引用框架)。
有SIMD libraries可以非常有效地做到这一点。
现在我想使用类似 FOR 的技术来编码有符号整数,例如来自未排序的无符号整数的差分序列。每个有符号整数的符号需要存储在某处,有两种选择:
我现在正在走路径 2。 2-s 补码在 msb(最高有效位)中有符号位,因此这不适用于位打包 à la FOR。一种可能性是将符号存储在 lsb(最低有效位)中。以这种方式存储有符号整数是非常不寻常的,据我所知,没有任何指令支持这种方式。现在的问题是:能否使用 SIMD 指令有效地编码/解码这些 lsb 符号整数?
我认为 AVX-512 _mm_testn_epi32_mask
可用于从每个 uint32 中提取 lsb,然后是移位,然后是某种类型的两个 mask_extract
?相当复杂。
最佳答案
未经测试ZigZag C 中使用 SSE2 处理 64 位整数的示例:
(注意:SSE2 缺少一些 64 位指令...)
#include <emmintrin.h>
// from comment by Peter-Cordes
__m128i zigzag_encode_epi64(__m128i v) {
__m128i signmask = _mm_shuffle_epi32(v, _MM_SHUFFLE(3,3,1,1));
signmask = _mm_srai_epi32(signmask, 31);
return _mm_xor_si128(_mm_add_epi64(v, v), signmask);
}
__m128i zigzag_decode_epi64 (__m128i v) {
__m128i signmask = _mm_and_si128(_mm_set_epi32(0, 1, 0, 1), v);
signmask = _mm_sub_epi64(_mm_setzero_si128(), signmask);
return _mm_xor_si128(_mm_srli_epi64(v, 1), signmask);
}
// no constant
__m128i zigzag_decodev3_epi64 (__m128i v) {
__m128i t = _mm_srli_epi64(v, 1);
__m128i signmask = _mm_sub_epi64(_mm_slli_epi64(t, 1), v);
return _mm_xor_si128(t, signmask);
}
Zigzag 适用于按位 varint。但是,字节组 varint 可能希望“从可变位宽进行符号扩展”。
32 位示例
我更喜欢比较而不是算术移位。我假设 - 当展开时 - 比较将有 1 个周期的低延迟。
__m128i zigzag_encode_epi32 (__m128i v) {
__m128i signmask =_mm_cmpgt_epi32(_mm_setzero_si128(), v);
return _mm_xor_si128(_mm_add_epi32(v, v), signmask);
}
__m128i zigzag_decode_epi32 (__m128i v) {
const __m128i m = _mm_set1_epi32(1);
__m128i signmask =_mm_cmpeq_epi32(_mm_and_si128(m, v), m);
return _mm_xor_si128(_mm_srli_epi32(v, 1), signmask);
}
__m128i delta_encode_epi32 (__m128i v, __m128i prev) {
return _mm_sub_epi32(v, _mm_alignr_epi8(v, prev, 12));
}
// prefix sum (see many of answers around stackoverflow...)
__m128i delta_decode_epi32 (__m128i v, __m128i prev) {
prev = _mm_shuffle_epi32(prev, _MM_SHUFFLE(3,3,3,3)); // [P P P P]
v = _mm_add_epi32(v, _mm_slli_si128(v, 4)); // [A AB BC CD]
prev = _mm_add_epi32(prev, v); // [PA PAB PBC PCD]
v = _mm_slli_si128(v, 8); // [0 0 A AB]
return _mm_add_epi32(prev, v); // [PA PAB PABC PABCD]
}
__m128i delta_zigzag_encode_epi32 (__m128i v, __m128i prev) {
return zigzag_encode_epi32(delta_encode_epi32(v, prev));
}
__m128i delta_zigzag_decode_epi32 (__m128i v, __m128i prev) {
return delta_decode_epi32(zigzag_decode_epi32(v), prev);
}
注意:Delta 编码会更快(往返/解码),以便在编码时转置元素然后在解码期间再次转置它们;水平前缀和真的很慢。然而,确定每个批处理中要转置的元素的最佳数量似乎是一个难题。
关于sse - SIMD:位包有符号整数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67088336/
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 7年前关闭。 Improve this qu
我有一个代码库,我可以在我的 mac 上编译和运行,但不能在我的远程 linux 机器上编译和运行,我不确定为什么。 编译时出现错误 fatal error: simd/simd.h: No such
我需要了解如何编写一些可并行化问题的 C++ 跨平台实现,以便在可用的情况下利用 SIMD(SSE、SPU 等)。以及我希望能够在运行时在 SIMD 和非 SIMD 之间切换。 您建议我如何解决这个问
我正在使用 AVX 内在 _mm256_extract_epi32() . 不过,我不完全确定我是否正确使用它,因为 gcc 不喜欢我的代码,而 clang 编译它并运行它没有问题。 我根据整数变量的
当我可以使用 SSE3 或 AVX 时,SSE2 或 MMX 等较旧的 SSE 版本是否可用 - 还是我还需要单独检查它们? 最佳答案 一般来说,这些都是附加的,但请记住,多年来英特尔和 AMD 对这
在 godbolt.org 使用 gcc 7.2 我可以看到以下内容 code在汇编程序中翻译得非常好。我看到 1 次加载、1 次添加和 1 次存储。 #include __attribute__(
假设我们有一个函数将两个数组相乘,每个数组有 1000000 个 double 值。在 C/C++ 中,该函数如下所示: void mul_c(double* a, double* b) {
我有一个 A = a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4 我有两排, float32x2_t a = a1 a2 flo
我正在考虑编写一个 SIMD vector 数学库,因此作为一个快速基准,我编写了一个程序,该程序执行 1 亿(4 个 float ) vector 元素乘法并将它们加到累积总数中。对于我的经典非 S
我正在开发带有英特尔编译器 OpenMP 4.0 的英特尔 E5(6 核、12 线程) 为什么这段代码 SIMD 编译比并行 SIMD 编译更快? for (int suppv = 0; suppv
OpenMP 4.0 引入了 SIMD 结构以利用 CPU 的 SIMD 指令。根据规范http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf ,有两种结
英特尔编译器允许我们通过以下方式对循环进行矢量化 #pragma simd for ( ... ) 但是,您也可以选择使用 OpenMP 4 的指令执行此操作: #pragma omp simd fo
关注我的 x86 question ,我想知道如何在 Arm-v8 上有效地矢量化以下代码: static inline uint64_t Compress8x7bit(uint64_t x) {
Intel 提供了几个 SIMD 命令,它们似乎都对 128 位数据执行按位异或: _mm_xor_pd(__m128d, __m128d) _mm_xor_ps(__m128, __m128) _m
可以使用“位打包”技术压缩无符号整数:在一个无符号整数 block 中,只存储有效位,当一个 block 中的所有整数都“小”时,会导致数据压缩。该方法称为 FOR (引用框架)。 有SIMD lib
SSE 寄存器是否在逻辑处理器(超线程)之间共享或复制? 对于 SSE 繁重的程序,我能否期望从并行化中获得与普通程序相同的加速(英特尔声称具有超线程的处理器为 30%)? 最佳答案 从英特尔的文档中
我正在编写一个使用 SSE 指令来乘法和相加整数值的程序。我用浮点数做了同样的程序,但我的整数版本缺少一个指令。 使用浮点数,在完成所有操作后,我将 de 值返回到常规浮点数数组,执行以下操作: _m
我正在开发基于Intel指令集(AVX,FMA等)的高性能算法。当数据按顺序存储时,我的算法(内核)运行良好。但是,现在我面临一个大问题,但没有找到解决方法或解决方案: see 2D Matrix i
大家好 :) 我正在尝试了解有关浮点、SIMD/数学内在函数和 gcc 的快速数学标志的一些概念。更具体地说,我在 x86 cpu 上使用 MinGW 和 gcc v4.5.0。 我已经搜索了一段时间
根据https://sourceware.org/glibc/wiki/libmvec GCC 具有数学函数的向量实现。它们可以被编译器用于优化,可以在这个例子中看到:https://godbolt.
我是一名优秀的程序员,十分优秀!