- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想同时训练多个神经网络,我正在尝试使用 multiprocessing
模块,以便每个网络都可以在单独的过程中进行训练,但我遇到了一个问题.当我运行下面的演示代码时(由于 apply_async
函数没有给出错误提示,我暂时将其更改为 apply
函数):
import tensorflow as tf
import multiprocessing as mp
class SeqModel(tf.keras.Sequential):
def __init__(self, input_size, hidden_sizes, output_size):
super().__init__()
self.add(tf.keras.layers.Dense(hidden_sizes[0], activation="relu", input_shape=(input_size,)))
for hidden_size in hidden_sizes[1:]: self.add(tf.keras.layers.Dense(hidden_size, activation="relu"))
if output_size is not None: self.add(tf.keras.layers.Dense(output_size))
class Partition:
def __init__(self, partition_id):
self.partition_id = partition_id
self.model = None
def initialization(self):
self.model = SeqModel(10,[10,10],10)
def test(self):
print(f'partition {self.partition_id} testing...')
def func():
partition_list = [Partition(i) for i in range(4)]
for partition in partition_list: partition.initialization()
p = mp.Pool(4)
for partition in partition_list:
p.apply(partition.test)
p.close()
p.join()
if __name__ == '__main__':
func()
我收到以下错误:
Traceback (most recent call last):
File "C:/Users/Administrator/Dropbox (ASU)/Work/Traffic State Estimation/traffic state estimation/dataset/mp/mp_net.py", line 43, in <module>
func()
File "C:/Users/Administrator/Dropbox (ASU)/Work/Traffic State Estimation/traffic state estimation/dataset/mp/mp_net.py", line 37, in func
p.apply(partition.test)
File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\multiprocessing\pool.py", line 357, in apply
return self.apply_async(func, args, kwds).get()
File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\multiprocessing\pool.py", line 771, in get
raise self._value
File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\multiprocessing\pool.py", line 537, in _handle_tasks
put(task)
File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\multiprocessing\connection.py", line 206, in send
self._send_bytes(_ForkingPickler.dumps(obj))
File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\multiprocessing\reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
TypeError: cannot pickle 'weakref' object
如果我不进行分区初始化(分区实例中不涉及 SeqModel),代码运行没有问题。这是否意味着我不能在子进程中使用 tf 模型?
最佳答案
要使用 Pool
,您的对象必须是可挑选的,因为 Pool
方法使用 mp.SimpleQueue
将任务发送到进程,并且 mp.SimpleQueue
只接受腌制对象。
虽然默认情况下 Tensorflow 模型不可选取,因此您不能轻松地将 Pool 与 Tensorflow 模型一起使用。查看 TensorFlow
中的未解决问题,使 Model
可挑选。
但是,您可以尝试通过讨论中建议的变通方法使 Model
可选 https://github.com/tensorflow/tensorflow/issues/34697#issuecomment-627193883
关于python - 将 Tensorflow 与多处理一起使用时无法腌制 'weakref' 对象,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67440375/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!