- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
该模型将 LSTM 作为其第一层。
在调用 model.predict 时说你传入了几个样本:
>sam = np.array([ [[.5, .6, .3]], [[.6, .6, .3]], [[.5, .6, .3]] ])
>model.predict(sam)
array([[ 0.23589483],
[ 0.2327884 ],
[ 0.23589483]])
sam = np.array([ [[.1],[.1],[.9]], [[.1],[.9],[.1]], [[.1],[.1],[.9]] ])
model.predict(sam)
array([[ 0.69906837],
[ 0.1454899 ],
[ 0.69906837]])
最佳答案
我很欣赏这是一个老问题,但希望这个答案可以帮助像我这样的其他 Keras 初学者。
我在我的机器上运行这个例子并观察到 LSTM 的隐藏状态和单元状态确实随着对 model.predict
的调用而改变。 .
import numpy as np
import keras.backend as K
from keras.models import Model
from keras.layers import LSTM
batch_size = 1
timestep_size = 2
num_features = 4
inputs = Input(batch_shape=(batch_size, timestep_size, num_features)
x = LSTM(num_features, stateful=True)(inputs)
model = Model(inputs=inputs, outputs=x)
model.compile(loss="mse",
optimizer="rmsprop",
metrics=["accuracy"])
x = np.random.randint((10,2,4))
y = np.ones((10,4))
model.fit(x,y, epochs=100, batch_size=1)
def get_internal_state(model):
# get the internal state of the LSTM
# see https://github.com/fchollet/keras/issues/218
h, c = [K.get_value(s) for s, _ in model.state_updates]
return h, c
print "After fitting:", get_internal_state(model)
for i in range(3):
x = np.random.randint((10,2,4))
model.predict(x)
print "After predict:", get_internal_state(model)
get_internal_state
的调用输出的示例训练结束后:
After_fitting: (array([[ 1., 1., 1., 1.]], dtype=float32), array([[ 11.33725166, 11.8036108 , 181.75688171, 25.50110626]], dtype=float32))
After predict (array([[ 1. , 0.99999994, 1. , 1. ]], dtype=float32), array([[ 9.26870918, 8.83847237, 179.92633057, 28.89341927]], dtype=float32))
After predict (array([[ 0.99999571, 0.9992013 , 1. , 0.9915328 ]], dtype=float32), array([[ 6.5174489 , 8.55165958, 171.42166138, 25.49199104]], dtype=float32))
After predict (array([[ 1., 1., 1., 1.]], dtype=float32), array([[ 9.78496075, 9.27927303, 169.95401001, 28.74017715]], dtype=float32))
关于keras - 在 Keras 中,LSTM 状态何时在调用 model.predict 时重置?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39196945/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!